Wir schaffen Wissen – heute für morgen

The Paul Scherrer Institute, PSI, is the largest research institute for natural and engineering sciences within Switzerland. We perform world-class research in three main subject areas: Matter and Material; Energy and the Environment; and Human Health. By conducting fundamental and applied research, we work on long-term solutions for major challenges facing society, industry and science.

Current news from PSI

11 July 2018

teaser picture

On the path to new high-performance transistors

Media Releases Research Using Synchrotron Light Large Research Facilities Materials Research

The electronics industry expects a novel high-performance transistor made of gallium nitride to offer considerable advantages over present-day high-frequency transistors. Yet many fundamental properties of the material remain unknown. Now, for the first time, researchers at the Paul Scherrer Institute PSI have observed electrons while they were flowing in this promising transistor. For that they used the world's top-performing source of soft X-rays at PSI's Swiss Light Source SLS.

29 June 2018

teaser picture

Cleaner emissions thanks to sponge-like structure

Media Releases Energy and Environment

PSI researchers have developed a new catalytic converter for cleaning emissions from natural gas engines. It is very active even at low temperatures and remains that way over a long period of time. This allows natural gas to be burned in a cleaner, more climate-friendly way. Thus natural gas and biogas become more attractive as substitutes for petroleum products – for example, as fuel for cars.

20 June 2018

teaser picture

Movie directors with extra roles

SwissFEL Storage Large Research Facilities

Data storage devices based on novel materials are expected to make it possible to record information in a smaller space, at higher speed, and with greater energy efficiency than ever before. Movies shot with the X-ray laser show what happens inside potential new storage media, as well as how the processes by which the material switches between two states can be optimised.
Older news can be found in the overview of the current year.