Direkt zum Inhalt
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Suche
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIÖffnen dieses Hauptmenu Punktes
    • Research on Covid-19
    • Research Initiatives
    • Ethics and Research integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsÖffnen dieses Hauptmenu Punktes
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Scientific Computing, Theory and Data
    • Large Research Facilities
  • Facilities and InstrumentsÖffnen dieses Hauptmenu Punktes
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesÖffnen dieses Hauptmenu Punktes
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • New ProjectsÖffnen dieses Hauptmenu Punktes
    • SLS 2.0
    • IMPACT
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

Sie befinden sich hier:

  1. PSI Home
  2. Labs & User Services
  3. NUM
  4. Laboratory for Multiscale Materials Experiments

Sekundäre Navigation

Laboratory for Multiscale Materials Experiments

  • About LMX
    • Organisational Structure
  • People
  • Research
  • Scientific Highlights
  • News & Events
    • News
    • Seminars and Events 2022
    • Seminars 2019
    • Seminars 2018
    • Seminars 2017
  • Facilities
  • Teaching and Education
  • Gallery
  • Publications
  • Materials Research @ PSI
  • Contacts
  • Nützliche Links

  • PSI Telefon Directory

Info message

Dieser Inhalt ist nicht auf Deutsch verfügbar.
banner lmx 005.jpg

LMX: Laboratory for Multiscale materials eXperiments

The Laboratory for Multiscale materials eXperiments (LMX) focusses on designing novel functional materials in poly- and single crystalline form, as thin films and as multilayers. Read more about LMX
 

News

19. Mai 2020

Young Scientist Award 2020

The Young Scientist Award 2020 goes to Claire Donnelly for advances in the experimental characterization of spin textures and their dynamics in three dimensions with X-ray techniques.

Claire Donnelly, a former Ph.D and postdoc at PSI in the Mesoscopic Systems Group, is currently a Leverhulme Early Career Research Fellow in the Cavendish Laboratory, University of Cambridge. She received her PhD in 2017 from the ETH Zurich for her work on hard X-ray tomography of three-dimensional magnetic structures based at the Paul Scherrer Institute. Following a postdoc at the ETH Zurich, she moved to the University of Cambridge and the Cavendish in January 2019, where she is focusing on the dynamics of three-dimensional magnetic nanostructures.

Her research focuses on three dimensional magnetic systems, which she studies using sophisticated synchorotron X-rays to determine the three-dimensional magnetic configurations, and their dynamic behaviour, at the nanoscale.

Weiterlesen
12. Dezember 2019
tecday_t.jpg

TecDay: LMX meets Hohe Promenade

TecDay is an SATW initiative that was developed at the Kantonsschule Limmattal in 2007 and has since been rolled out to more than 60 secondary schools across Switzerland. By the end of 2017 it had reached  around 45,000 students and 5,000 teachers. In December 2019 the LMX contributed in one module, that received a total of 16 students over the course of a morning. The module was organized in three different “stations”, each one focusing on one topic or area that the group is working on.

Weiterlesen

Scientific Highlights

3. Mai 2022
Mielke et al

Low-temperature magnetic crossover in the topological kagome magnet TbMn6Sn6

Magnetic topological phases of quantum matter are an emerging frontier in physics and materials science, of which kagome magnets appear as a highly promising platform. Here, we explore magnetic correlations in the recently identified topological kagome system TbMn6Sn6 using muon spin rotation, combined with local field analysis and neutron diffraction. Our studies identify an out-of-plane ferrimagnetic structure with slow magnetic fluctuations which exhibit a critical slowing down below T*C1 ≃ 120 K and finally freeze into static patches with ideal out-of-plane order below TC1 ≃ 20 K....

 

Weiterlesen
19. April 2022
John et al

Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing

Many in-memory computing frameworks demand electronic devices with specific switching characteristics to achieve the desired level of computational complexity. Existing memristive devices cannot be reconfigured to meet the diverse volatile and non-volatile switching requirements, and hence rely on tailored material designs specific to the targeted application, limiting their universality. “Reconfigurable memristors” that combine both ionic diffusive and drift mechanisms could address these limitations, but they remain elusive. Here we present a reconfigurable halide perovskite nanocrystal memristor that achieves on-demand switching between diffusive/volatile and drift/non-volatile modes by controllable electrochemical reactions.

 

Weiterlesen
4. April 2022
Blick in die magnetische Zukunft

A look into the magnetic future

Media Releases Research Using Synchrotron Light Materials Research

PSI researchers are the first to observe a specific behaviour of magnetic ice.

Weiterlesen
25. März 2022
Shang et al

Spin-triplet superconductivity in Weyl nodal-line semimetals

Topological semimetals are three dimensional materials with symmetry-protected massless bulk excitations. As a special case, Weyl nodal-line semimetals are realized in materials having either no inversion or broken time-reversal symmetry and feature bulk nodal lines. The 111-family, including LaNiSi, LaPtSi and LaPtGe materials (all lacking inversion symmetry), belongs to this class. Here, by combining muon-spin rotation and relaxation with thermodynamic measurements, we find that these materials exhibit a fully- gapped superconducting ground state, while spontaneously breaking time-reversal symmetry at the superconducting transition.

 

Weiterlesen
17. März 2022
Saccone et al

Direct observation of a dynamical glass transition in a nanomagnetic artificial Hopfield network

Spin glasses, generally defined as disordered systems with randomized competing interactions, are a widely investigated complex system. Theoretical models describing spin glasses are broadly used in other complex systems, such as those describing brain function, error-correcting codes or stock-market dynamics. This wide interest in spin glasses provides strong motivation to generate an artificial spin glass within the framework of artificial spin ice systems. Here we present the experimental realization of an artificial spin glass consisting of dipolar coupled single-domain Ising-type nanomagnets arranged onto an interaction network that replicates the aspects of a Hopfield neural network.

 

Weiterlesen

Sidebar

Contact

Laboratory for Multiscale Materials Experiments (LMX)
Paul Scherrer Institut
5232 Villigen PSI
Switzerland
Homepage

Telephone:
+41 56 310 3402
Telefax:
+41 56 310 3191
E-mail:
margit.braun-shea@psi.ch (Secretary)

Homepage NUM

Research with Neutrons and Muons NUM Division at PSI


Open Positions

Job Opportunities at Research Division NUM.

PSI Scientific Reports

Archive 2006-2012. The Scientific Reports – containing accounts of research topics from all the different areas – provide an impression of the variety of subjects researched at PSI.

top

Fussbereich

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Schweiz

Telefon: +41 56 310 21 11
Telefax: +41 56 310 21 99

Der Weg zu uns
Kontakt

Besucherzentrum psi forum
Schülerlabor iLab
Zentrum für Protonentherapie
PSI Bildungszentrum
PSI Guest House (in english)
PSI Gastronomie
psi forum-Shop

 

Service & Support

  • Telefonbuch
  • User Office
  • Accelerator Status
  • Publikationen des PSI
  • Lieferanten
  • E-Rechnung
  • Computing
  • Sicherheit

Karriere

  • Arbeiten am PSI
  • Stellenangebote
  • Aus- und Weiterbildung
  • Berufsbildung
  • PSI Bildungszentrum

Für die Medien

  • Das PSI in Kürze
  • Zahlen und Fakten
  • Mediacorner
  • Medienmitteilungen
  • Social Media

Folgen Sie uns: Twitter (deutsch) LinkedIn Youtube Facebook Instagram Issuu RSS

Footer legal

  • Impressum
  • Nutzungsbedingungen
  • Editoren-Login