The PSI Laboratory for Muon Spin Spectroscopy uses the fundamental particles from the Swiss Muon Source SµS to investigate matter and materials.
Call for Proposals
Next Deadline: Call I/2026 December 01, 2025.
- The 2nd call (II/2025) for the year 2025 is closed.
- Note: Allocation period for call I/2026: June 2026 - September 2026.
- Note: Allocation period for call II/2026: October 2026 - December 2026.
- Experiment schedules
The technique "µSR" - Muon Spin Rotation, Relaxation or Resonance
A research tool using muons as sensitive local magnetic probes in matter.
Worldwide unique instruments:
The Low-Energy Muon (LEM) beam and µSR Spectrometer for the study of thin films, layers and surfaces;
the high-field instrument (HAL-9500) equipped with specially designed detectors to perform studies in fields up to 9.5 Tesla and at very low temperatures;
and the combination of very-high pressures (up to 2.8 GPa) combined with sub-Kelvin temperatures (GPD).
Lab News & Scientific Highlights
A New Quantum Landscape: Coexisting High-Tc Superconductivity, Magnetism, and Complex Charge Order in LaRu3Si2.
Despite intense research on kagome superconductors, many fundamental questions remain—especially regarding the unconventional nature of their charge order and superconducting phases. These materials are rich in complexity, and to truly unravel their behavior, a broad and integrated approach is essential. In our study ...
Pressure effect on the spin density wave transition in La2PrNi2O6.96
High-pressure studies reveal a stark contrast between the superconducting properties of double-layer Ruddlesden-Popper (RP) nickelates La2PrNi2O7 and La3Ni2O7. While La2PrNi2O7 exhibits bulk superconductivity, La3Ni2O7 displays filamentary behavior, suggesting that superconductivity is confined to phase interfaces rather than the bulk. Since magnetism emerges ...
Pressure tuning of competing interactions on a honeycomb lattice
Exchange interactions are mediated via orbital overlaps across chemical bonds. Thus, modifying the bond angles by physical pressure or strain can tune the relative strength of competing interactions. Here we present a remarkable case of such tuning between the Heisenberg (J) and Kitaev (K) exchange, which respectively establish magnetically ordered and spin liquid phases on a honeycomb lattice. We observe ...