PSI Stories
Mit Röntgenstrahlen der Lebensdauer von Lithium-Ionen-Akkus auf der Spur
Mithilfe von Röntgen-Tomographie haben Forschende die Vorgänge in Materialien von Batterie-Elektroden detailliert untersuchen können. Anhand hochaufgelöster 3D-Filme zeigen sie auf, weshalb die Lebensdauer der Energiespeicher begrenzt ist.
Mit Vitamin gegen Krebs
Cristina Müller vom Zentrum für Radiopharmazeutische Wissenschaften forscht an einer Therapie mit radioaktiv markierten Folsäure-Verbindungen. Diese gelangen wie ein Trojanisches Pferd ungehindert in die Zelle und töten diese dann mit ihrer Strahlung ab, erklärt sie.
Die Sicherheitskultur gestalten
Sabine Mayer leitet seit Anfang Jahr die Abteilung Strahlenschutz und Sicherheit ASI und ist somit zuständig für die Gewährleistung der Sicherheit am PSI von der Betriebsfeuerwehr über die Arbeitssicherheit bis zur radiologischen Überwachung. Doch die Bedeutung der Abteilung reicht über das PSI hinaus: die Schweizerischen Behörden vertrauen ihrem Pool an Fachleuten, so dass sie die Sicherheitskultur in der Schweiz mitprägt. Ein Interview.
Ein entscheidender Zerfall
Ein seltener Vorgang in der Natur soll darüber entscheiden, wie wir in Zukunft am besten unser Universum beschreiben. Es handelt sich um einen bestimmten Zerfall einer bestimmten Elementarteilchensorte: der Myonen. Diese Teilchen leben nicht lange und zerfallen in verschiedene andere Partikel. Doch ein ganz besonderer Zerfallsprozess ist laut den einen theoretischen Modellen praktisch verboten, laut den anderen aber erlaubt. Welche Theorie hat recht? Durch die genaueste Beobachtung von vielen hundert Billionen Teilchenzerfällen sind Physiker am Paul Scherrer Institut diesem Rätsel näher gekommen. Ihre Ergebnisse haben sie im Fachblatt Physical Review Letters veröffentlicht.
Auf dem Weg zu Natrium-Ionen-Batterien
Natriumdynamik auf mikroskopischem Niveau verstehenLithium-Ionen-Batterien sind sehr leistungsstark, doch die Nutzung von Lithium hat Nachteile: es ist teuer und seine Gewinnung belastet die Umwelt. Eine Möglichkeit, diese Nachteile zu umgehen, wäre statt Lithium Natrium zu verwenden. Um eine Natrium-Ionen-Batterie zu bauen, muss man verstehen, wie sich die Natrium-Ionen in den entsprechen Materialien bewegen. Forschende des Paul Scherrer Instituts haben nun erstmals die Pfade bestimmt, auf denen sich Natrium-Ionen in einem möglichen Batterie-Material bewegen. Mit diesem Wissen kann man überlegen, wie man durch geringe Änderungen der Struktur oder der Zusammensetzung neue Materialien erzeugen kann, die Eigenschaften haben, wie sie in zukünftigen Batterien gebraucht würden.
Computersimulationen: wichtige Stütze für die KKW-Sicherheit
Ohne Computersimulationen wäre der Betrieb von Kernkraftwerken kaum möglich. Ob es um den Einbau neuer Komponenten oder um Tests und Versuche zur Wahrung der Sicherheit geht, fast alles muss vorher am Computer im Voraus berechnet und analysiert werden. Im Labor für Reaktorphysik und Systemverhalten des Paul Scherrer Instituts PSI werden dafür Rechenmodelle und Computerprogramme entwickelt. Die PSI-Forscher fungieren damit als unabhängige Forschungspartner der Aufsichtsbehörde, des Eidgenössischen Nuklearsicherheitsinspektorats ENSI, und leisten so einen wichtigen Beitrag zur Gewährleistung der Sicherheit von schweizerischen Kernkraftwerken.
Eine runde Sache für weniger nuklearen Abfall
Bereits in den 1960er Jahren entstand die Idee, die Brennstoffe für Kernkraftwerke in Form von dicht gepackten Kugeln statt der heutigen üblichen Pellets herzustellen. Man versprach sich davon eine Vereinfachung der Brennstoffherstellung sowie eine deutliche Verminderung der radioaktiven Abfallmenge sowohl bei der Herstellung des Brennstoffs selbst als auch nach dessen Nutzung in einem Kernkraftwerk. Der kugelförmige Brennstoff kam jedoch nie zum Einsatz, weil sich die schnellen Reaktoren, für die er vorgesehen war, nicht durchsetzen konnten. Auch das Paul Scherrer Institut PSI trug in der Vergangenheit zur Erforschung des kugelförmigen Kernbrennstoffes bei. Zurzeit laufen am PSI wieder mehrere, zum Teil EU-finanzierte Projekte, um die Herstellung der Brennstoffkügelchen weiter zu verfeinern. Zum Einsatz kommen könnte diese Art von Brennstoff entweder in speziellen Anlagen zur Reduktion von radioaktivem Abfall (sogenannten ADS-Anlagen) oder in schnellen Reaktoren der vierten Generation, die in einem geschlossenen Zyklus ebenfalls weniger langlebigen Abfall produzieren.
Neutronen und Synchrotronlicht helfen bronzezeitliche Arbeitstechniken zu entschlüsseln
Untersuchungen am PSI haben es möglich gemacht, zu bestimmen, wie ein einzigartiges bronzezeitliches Beil hergestellt worden ist. Zu verdanken ist das dem Verfahren der Neutronentomografie, mit der man ein genaues dreidimensionales Abbild des Inneren eines Gegenstandes erzeugen kann. Seit einem Jahrzehnt kooperiert das PSI erfolgreich mit verschiedenen Museen und archäologischen Institutionen im In- und Ausland. Es ist ein deutliches Zeichen der etablierten Kooperation, dass der 18. Internationale Kongress über Antike Bronzen, der vom 3. - 7. September 2013 an der Universität Zürich stattfindet, auch einen Tag am PSI tagt.
Rekonstruktion des Nuklearunfalls von Fukushima
Forscher des Paul Scherrer Instituts PSI beteiligen sich zurzeit an einem internationalen Projekt mit dem Ziel, die Vorgänge zu rekonstruieren, die sich beim Nuklearunfall vom März 2011 im Inneren der Reaktoren des japanischen Kernkraftwerks Fukushima Daiichi ereigneten. Insbesondere die Rekonstruktion des Endzustandes der Reaktorkerne soll dem Betreiber des havarierten Werkes, der Tokyo Electricity Company TEPCO dabei helfen, die Dekontaminierungsarbeiten in der Reaktorschutzhülle vorzubereiten. Zudem soll die Übung auch zur weiteren Verfeinerung der Computerprogramme beitragen, mit deren Hilfe Nuklearunfälle simuliert werden.
Die SwissFEL-Anlage: die Undulatorstrecke – hier entsteht das Licht
Das Röntgenlicht des SwissFEL entsteht, wenn die im Linearbeschleuniger beschleunigten Elektronen auf eine Wellenbahn gezwungen werden. Das geschieht in den Undulatoren - Magnetanordnungen, die die Elektronen ablenken. Die gesamte Undulatorstrecke wird 60 Meter lang sein.