Skip to main content
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Suche
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIOpen mainmenu item
    • Research Initiatives
    • Research Integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsOpen mainmenu item
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Large Research Facilities
  • Facilities and InstrumentsOpen mainmenu item
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesOpen mainmenu item
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

You are here:

  1. PSI Home
  2. Labs & User Services
  3. Scientific Highlights

Secondary navigation

Labs & User Services

  • Research at PSI
  • Research Divisions and Labs
  • Facilities and Instruments
    • Large Research Facilities
    • Facilities
  • PSI User Labs
    • Methods and scopes of the Large Research Facilities
    • Proposals for beamtime
    • Proposal Deadlines
    • EU support programmes
    • Data Analysis Service
    • PSI Facility Newsletter
  • Research Initiatives
  • Scientific Highlights Expanded submenu item
    • NUM Highlights
    • PSD Highlights
    • BIO Highlights
    • ENE Highlights
    • NES Highlights
    • GFA Highlights
    • Scientific Reports
  • Scientific Events
  • Scientific Career
    • PSI-FELLOW
    • PSI Career Return Program
  • PSI Data Policy
  • Useful links

  • Useroffice
  • Digital User Office (DUO)
  • Accelerator status
  • PSIGuesthouse
  • Lib4RI
  • Research Integrity

Scientific Highlights

Toggle filters
Datum
2 March 2021
Table of Content

Optimization of Nanofluidic Devices for Geometry-Induced Electrostatic Trapping

Single particle studies play an important role in understanding their physical and chemical properties. Electrostatic trapping is on one such robust method that allows for a contact-free high-throughput single nanoparticle trapping in an aqueous environment in a nanofluidic device. However, finding an optimum design solution for stiffer single particle trapping for different particles is a cumbersome process. This work presents all crucial geometrical parameters required to tune the trapping efficiency of the device, and their impact. Furthermore, the work enables to quickly identify and optimize nanofluidic devices design for stronger single particle confinement using numerical simulations, saving the massive experimental time required for device optimization.

Read more
23 February 2021
battery teaser

The Swiss Battery Days 2020/2021

A world without batteries? Unimaginable! They transform our electronic devices into wireless and portable objects.

Read more
22 February 2021
LIn et al PRL

Strong Superexchange in a d^(9−δ) Nickelate Revealed by Resonant Inelastic X-Ray Scattering

The discovery of superconductivity in a d9−δ nickelate has inspired disparate theoretical perspectives regarding the essential physics of this class of materials. A key issue is the magnitude of the magnetic superexchange, which relates to whether cuprate-like high-temperature nickelate superconductivity could be realized. We address this question using Ni L-edge and O K-edge spectroscopy of the reduced d9−1/3 trilayer nickelates R4Ni3O8 (where R = La, Pr) and associated theoretical modeling.

 

Read more
18 February 2021
Schematic of the water transport mechanisms in GDL

Temperature Dependent Water Transport Mechanism

Subsecond and submicron operando X-ray tomographic microscopy (XTM) was applied to reveal the water dynamics inside the gas diffusion layer (GDL) of polymer electrolyte fuel cells (PEFC). Utilizing the instrumental advancements in operando XTM of PEFCs the contribution of capillary-fingering and phase-change-induced flow on water transport in GDLs was quantified, for the first time during fuel cell startup at different operation temperatures.

Read more
18 February 2021
Platinum chloride in aqueous solution promotes the dispersion of large gold nanoparticles (>70 nm) on carbon

Sustainable Synthesis of Bimetallic Single Atom Gold-Based Catalysts with Enhanced Durability in Acetylene Hydrochlorination

Platinum chloride in aqueous solution promotes the dispersion of large gold nanoparticles (>70 nm) on carbon carriers into single atoms, forming bimetallic single-atom catalysts with improved resistance against sintering at temperatures up to 800 K and under the harsh reductive reaction conditions of acetylene hydrochlorination, leading to improved lifetime in this reaction. To rationalize these observations, this study, led by ETH Zurich, utilized X-ray adsorption spectroscopy conducted at the SuperXAS beamline of the SLS to provide insights into the degree of gold dispersion and the structure of the isolated metal sites in the bimetallic catalysts.

Read more
18 February 2021
Valsecchi et al

Decomposing Magnetic Dark-Field Contrast in Spin Analyzed Talbot-Lau Interferometry: A Stern-Gerlach Experiment without Spatial Beam Splitting

We have recently shown how a polarized beam in Talbot-Lau interferometric imaging can be used to analyze strong magnetic fields through the spin dependent differential phase effect at field gradients. While in that case an adiabatic spin coupling with the sample field is required, here we investigate a nonadiabatic coupling causing a spatial splitting of the neutron spin states with respect to the external magnetic field. This subsequently leads to no phase contrast signal but a loss of interferometer visibility referred to as dark-field contrast.

 

Read more
16 February 2021
PLDCDW

Structural involvement in the melting of the charge density wave in 1T-TiSe2

The authors find using resonant and non-resonant x-ray diffraction on an x-ray free electron laser that the structural distortion and the underlying electronic structure of the charge density wave in TiSe2 show different energetics at ultrafast timescales. This indicates that the lattice distortion stabilizes the charge density wave.

Read more
14 February 2021
Schematic FEL calorimetry

Ultrafast calorimetry of deeply supercooled water

FEL-based ultrafast calorimetry measurements show enhancement and maximum in the isobaric specific-heat.

Read more
12 February 2021
PSI 2 - Lead

Cutting the cost of splitting water

Hydrogen can be extracted from water and stored as fuel. But the world needs better catalysts to make this process sustainable and affordable.

Read more
12 February 2021
PSI 3 - Lead

Muon rakers bring particles into line

Muons can be created through collisions between protons and nuclei, but need to be controlled in order to be useful.

Read more
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • …
  • Next page ››
  • Last page Last »

Sidebar

PSI Scientific Reports

Archive 2006-2012. The Scientific Reports – containing accounts of research topics from all the different areas – provide an impression of the variety of subjects researched at PSI.

top

Footer

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Switzerland

Telephone: +41 56 310 21 11
Telefax: +41 56 310 21 99

How to find us
Contact form

Visitor Centre psi forum
School Lab iLab (in German)
Center for Proton Therapy
PSI Education Centre
PSI Guest House
PSI Gastronomie (in German)

 

Service & Support

  • Phone Book/People Search
  • User Office
  • Accelerator Status
  • PSI Publications
  • Suppliers
  • E-Billing
  • Computing
  • Safety (in German)

Career

  • Working at PSI
  • Job Opportunities
  • Training and further education
  • Vocational Training (in German)
  • PSI Education Center

For the media

  • PSI in brief
  • Facts and Figures
  • Media Contact
  • Media Releases
  • Social Media Newsroom

Follow us: Twitter (in English) LinkedIn Youtube Issuu RSS

Footer legal

  • Imprint
  • Terms and Conditions
  • Editors' login