
Laboratory for Non-linear Optics (LNO)
We develop and operate state-of-the-art laser systems for driving the high brightness electron source of the Hard X-ray Swiss Free Electron Laser (SwissFEL), and for pump-probe experiments at the photon-science beamlines. We improve and extend these systems according to the user requirements.
We pursue in-house research activities at the Hard X-ray Swiss Free Electron Laser (SwissFEL) and Swiss Light Source (SLS) beamlines exploiting LNO’s laser facilities. We perform R&D on laser-driven electron sources in close collaboration with PSI’s accelerator division.
Latest Scientific Highlights and News
Scientific Highlights
Making it easier to differentiate mirror-image molecules
Researchers have shown that mirror-image substances – so-called enantiomers – can be better distinguished using helical X-ray light.
Light-Induced Magnetization at the Nanoscale
Targeted manipulations of an atom's magnetic moment are tricky, as the charge currents used for this process are extremely difficult to control . Now, a consortium of collaborators in Germany, Switzerland, Slovenia and Italy reports on a solution to this problem in the cover page article of Physic Review Letters 128, Vol. 15. As it appears, the magnetization of an atomic gas can be altered by high-power lasers using a patterned wave front. The method is promising for studying and manipulating the magnetic properties of matter at the nanoscale.
Light springs and magnetic vortices: a new kind of dichroism
In contrast to circular dichroism that is dependent on the polarization, helicoidal dichroism induced by a twisted wave front profile is scarcely known. The first evidence of magnetic helicoidal dichroism has now been observed in an experiment using Spiral Fresnel Zone Plates developed at the Paul Scherrer Institut.