SμS – Swiss Muon Source

µSR - Muon Spin Rotation, Relaxation or Resonance: A research tool using muons as sensitive local magnetic probes in matter.
Research at the LMU focuses mainly on magnetic properties of materials and on positive muons or muonium (bound state of a positive muon and an electron) as light protons or hydrogen substitutes in matter.

Worldwide unique: The Low-Energy Muon Beam and µSR Spectrometer for the study of thin films, layers and surfaces, the possibility to perform high-field µSR with a field up to 9.5 Tesla, and the Extraction of Muons On Request for high frequency resolution and slow relaxation measurements.

Call for Proposals

Next Deadline: June 02, 2025.

Hossain et al

Superconductivity and a van Hove singularity con ned to the surface of a topological semimetal

The interplay between topology and superconductivity generated great interest in condensed matter physics. Here, we unveil an unconventional two-dimensional superconducting state in the Dirac nodal line semimetal ZrAs2 which is exclusively con ned to the top and bottom surfaces within the crystal’s ab plane. 

As a remarkable consequence ...

Klemm et al

Vacancy-induced suppression of charge density wave order and its impact on magnetic order in kagome antiferromagnet FeGe

Two-dimensional (2D) kagome lattice metals are interesting because their corner sharing triangle structure enables a wide array of electronic and magnetic phenomena. Recently, post-growth annealing is shown to both suppress charge density wave (CDW) order and establish long-range CDW with the ability to cycle between states repeatedly in the kagome antiferromagnet FeGe. 

Here we perform ...

Forslund et al

Anomalous Hall Effect due to Magnetic Fluctuations in a Ferromagnetic Weyl Semimetal

The anomalous Hall effect (AHE) has emerged as a key indicator of time-reversal symmetry breaking (TRSB) and topological features in electronic band structures. Absent of a magnetic field, the AHE requires spontaneous TRSB but has proven hard to probe due to averaging over domains. The anomalous component of the Hall effect is thus frequently derived from extrapolating the magnetic field dependence of the Hall response. We show ....