FLexible Advanced MuSR Environment (FLAME)
General Specifications
Location
Area piM3.3
Beam
Positive surface muons with momentum of 28MeV/c
Muon Polarization
~ 100% (spin rotation ~6 - 60 degrees)
Detectors
8 positron detectors + muon detector + forward and backward veto
Sample size
Area: >4x4 mm2, Thickness: > 250 mg/cm2
Magnet
Cryogenic Ltd. dry superconducting magnet (up to 3.5 T) with three shim coils for highest homogeneity and vector magnets for zero field compensation, wTF measurements and alpha calibration.
Cryostat
Oxford Instruments Variox cryostat with or without KelvinoxJT dilution refrigerator insert.
Sample Environment
Magnetic Field
Magnetic field up to ±3.5 T can be applied along the beam by using the dry Cryogenic Ltd. superconducting magnet. Shim coils may be used to improve homogeneity of the magnetic field in the sample space which is better than 10ppm.
The X (vertical, ±200G), Y (horizontal, ±100G), Z (longitudinal, ±100G) vector magnets can be used to adjust for true zero field conditions better than 50 mG. They also be used for weak longitudinal and transverse µSR as well as alpha calibration.
Cryostat
Oxford Instruments Variox cryostat with dilution fridge insert KelvinoxJT.
Variox with sample stick
Temperature range: ~ 1.7 K < T < 300 K
Variox with KelvinoxJT dilution fridge insert KelvinoxJT
Temperature ranges:
~ 25 mK < T < 1 K with circulating mixture
~ 1 K < T < 1.8 K with partial circulating mixture (test phase)
~ 1.8 K < T < 100 K passively using KelvinoxJT as a sample stick inside Variox
Detectors and Logic
Detector Arrangement
8 positron detectors + muon detector + forward and backward veto
Eight positron detectors are arranged around the sample. Each scintillator is directly connected to the silicon photomultipliers (SiPM), which are unaffected by the magnetic field up to 3.5 T and ensure a time resolution of about 150ps. A backward veto system acts as active collimator and the forward veto rejects muons which did not stop in the sample. Both veto systems also reject decay positrons that did not originate from the sample region.
Data Acquisition
The acquisition software DeltaT (html / pdf) is based entirely on the DAQ software package MIDAS.
Computers
The µSR data acquisition system hardware consists of a frontend PC running Scientific Linux and controlling the VME DAQ unit which is located in the GPS counting room and a Linux back-end server (psw422) located in the central computing center at PSI.
There are several PCs in the FLAME counting room for instrument control and data analysis. The area is equipped with a Linux PC for instrument control as well as with two Windows PCs which run the dedicated operation software for the KelvinoxJT dilution fridge and the superconducting magnet.