SINQ – Swiss Spallation Neutron Source

Header 2

Neutron scattering techniques are highly versatile and powerful tools for studying the structure and dynamics of condensed matter. A wide scope of problems, ranging from fundamental to solid state physics and chemistry, and from materials science to biology, medicine and environmental science, can be investigated with neutrons. In addition to scattering, non-diffractive methods like imaging techniques allows for non-destructive inspection of materials and components, providing information on their internal structure, composition, and integrity with growing relevance also for industrial applications.

The spallation neutron source SINQ is a continuous source - the first and only one of its kind in the world - with a flux of about 1014 n/cm2/s. Beside thermal neutrons, a cold moderator of liquid deuterium (cold source) slows neutrons down and shifts their spectrum to lower energies. These neutrons have proved to be particularly valuable in materials research and in the investigation of biological substances. 

SINQ operates as a user facility, meaning that scientists and research groups from around the world can apply for beamtime to conduct experiments using its various neutron instruments.

At the latest deadline in November 2024 more than 230 new proposals were submitted for the call I-25. The review process is ongoing and the results of the evaluation and of the panel meetings may be expected by the end of February 2025.  

The next deadline for the submission of proposals for SINQ will then be 15 May 2025 for the beam time period II-25 between 01 September and 23 December 2025. 

Sumarli et al

Operando phase mapping in multi-material laser powder bed fusion

Additive manufacturing (AM) or “3D printing” of metals, which builds structure layer by layer, has revolutionized the production of intricate 3D designs. Among its techniques, laser powder bed fusion (PBF-LB) excels in creating metallic parts with intricate designs and high precision. This process can combine different metals into innovative multi-material components with tailored properties, with regards to e.g., strength and thermal conductivity, surpassing the capabilities of single-material designs. However, ....

Zhu et al

Continuum Excitations in a Spin Supersolid on a Triangular Lattice

Magnetic, thermodynamic, neutron diffraction and inelastic neutron scattering are used to study spin correlations in the easy-axis XXZ triangular lattice magnet K2Co(SeO3)2. Despite the presence of quasi-2D “supersolid” magnetic order, the low-energy excitation spectrum contains no sharp modes and is instead a broad and structured multiparticle continuum. Applying a weak magnetic field ...

Andriushin et al

Reentrant multiple-q magnetic order and a “spin meta-cholesteric” phase in Sr3Fe2O7

Topologically nontrivial magnetic structures such as skyrmion lattices are well known in materials lacking lattice inversion symmetry, where antisymmetric exchange interactions are allowed. Only recently, topological multi-q magnetic textures that spontaneously break the chiral symmetry, for example, three-dimensional hedgehog lattices, were discovered in centrosymmetric compounds, where they are instead driven by frustrated interactions. Here we show that ...

User Office

Paul Scherrer Institute
bldg WBBC
Forschungsstrasse 111
CH-5232 Villigen-PSI

+41 56 310 46 66
useroffice@psi.ch

User Office
Provides all information about user access to the PSI Large Research Facilities

 

DUO Login
Direct link to the Digital User Office