Skip to main content
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Search
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Our ResearchOpen mainmenu item
    • Current topics from our research
    • Future Technologies
    • Energy and Climate
    • Health Innovation
    • Fundamentals of Nature
    • Large Research Facilities
    • Brochures
    • 5232 — The magazine of the Paul Scherrer Institute
    • Research Divisions & Labs (only english)
  • IndustryOpen mainmenu item
    • Overview
    • Technology Transfer
    • Expertise
    • Spin-off Companies
    • Park Innovaare
  • Proton TherapyOpen mainmenu item
    • Overview
    • Physician & Patient Information
  • CareerOpen mainmenu item
    • Overview
    • Job Opportunities
    • Working at PSI
    • Personnel Policy
    • Equal Opportunities, Diversity & Inclusion
    • Training and Further Education
    • Vocational Training
    • PSI Education Centre
    • Career Center
    • Support Program "PSI Career Return Program"
    • PSI-FELLOW/COFUND
  • Visit to PSIOpen mainmenu item
    • Overview
    • Visitor Centre psi forum
    • Schülerlabor iLab
    • Public Events
    • How to find us
  • About PSIOpen mainmenu item
    • PSI in brief
    • Strategy
    • Guiding principles
    • Facts and figures
    • Organisational structure
    • For the media
    • Suppliers and customers
    • Customers E-Billing
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

You are here:

  1. PSI Home
  2. Our Research
  3. The SINQ neutron source

Secondary navigation

Our Research

  • Current topics from our research
    • Future Technologies
    • Energy and Climate
    • Health Innovation
    • Fundamentals of Nature
    • ESI Platform
    • Large research facilities
    • Project SLS 2.0
    • Topic Overview
    • Archive
  • 5232 – The magazine of the Paul Scherrer Institute
    • Contact
  • Brochures
  • Films
    • Virtual Tour
  • Social Media
    • PSI Community Guidelines
  • Media corner
    • Media Releases
Overview article
 

The SINQ neutron source

Interior view of the neutron guide hall at the Spallation Neutron Source SINQ
Interior view of the neutron guide hall at the Spallation Neutron Source SINQ
In nature, all neutrons are bound within atomic nuclei. This means that they have to be knocked out of the nuclei so that they can be used as probes for the experiments at PSI, this takes place in the SINQ (pronounced: sin-cue) spallation source.
Principle of spallation reaction
Principle of spallation reaction

Producing neutrons – the spallation reaction

In the SINQ spallation source a beam of fast protons (at about 80 % of the speed of light) from the PSI proton accelerator facility strikes a block of lead (the Target). If a fast proton collides with a lead nucleus, the nucleus will be heated up and eject 10 to 20 neutrons.

To be used in experiments, neutrons have to be decelerated

The neutrons set free by this method are extremely fast – much too fast for the experiments. In order to decelerate the neutrons after they have been generated, the whole target is placed in a tank filled with heavy water(1). The neutrons are decelerated by collisions with the nuclei of the heavy hydrogen in this water. This produces thermal neutrons, which can be used to determine the structure of crystals, amongst other things.

Cold neutrons – investigations of larger structures require particularly slow neutrons

If larger structures – such as nanoparticles – are to be investigated using neutrons, these neutrons will have to be even slower (known as cold neutrons).

This is because neutrons can be more successfully used in experiments if their wavelengths are approximately the same size as the structure being examined, and slow neutrons have a larger wavelength than fast ones.

An additional tank, with extremely cold heavy hydrogen (minus 250 degrees Celsius), has been integrated into the SINQ water tank in order to decelerate the neutrons even further.

Neutron guides channel the neutrons to the experiments

The neutron scattering instruments radiate from the neutron source. The neutrons travel to the various measuring stations via neutron guides, which are glass conduits – coated internally with a special material – in which the neutrons are reflected repeatedly and thus transported to the experiment.

 

Additional Information

  • Research with neutrons
    Neutron research – an overview
  • Experiments using neutrons
    Two typical neutron experiments
  • Proton accelarator facility
    Source of fast protons driving SINQ

Notes

1: Heavy water – heavy hydrogen: The atomic nucleus of normal hydrogen consists of only one proton, while that of heavy hydrogen (deuterium) comprises one proton and one neutron. Molecules of heavy water contain heavy hydrogen, and heavy hydrogen is particularly suitable for neutron deceleration because it hardly absorbs any of the neutrons– unlike normal hydrogen.

Sidebar

01/2023

5232 — The magazine of the Paul Scherrer Institute

01/2023
View in issuu.com
Download
Subscribe to our magazine

Follow PSI

 Twitter
 LinkedIn
 Youtube
 Facebook
 Instagram

All social media channels


Visitor Centre psi forum

Experience research live


The iLab School Laboratory

Experience Science - Explore Research

top

Footer

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Switzerland

Telephone: +41 56 310 21 11
Telefax: +41 56 310 21 99

How to find us
Contact

Visitor Centre psi forum
School Lab iLab (in German)
Center for Proton Therapy
PSI Education Centre
PSI Guest House
PSI Gastronomie (in German)
psi forum shop

Service & Support

  • Phone Book
  • User Office
  • Accelerator Status
  • PSI Publications
  • Suppliers
  • E-Billing
  • Computing
  • Safety (in German)

Career

  • Working at PSI
  • Job Opportunities
  • Training and further education
  • Career Center
  • Vocational Training (in German)
  • PSI Education Center

For the media

  • PSI in brief
  • Facts and Figures
  • Media corner
  • Media Releases
  • Social Media

Follow us: Twitter (in English) LinkedIn Youtube Facebook Instagram Issuu RSS

Footer legal

  • Imprint
  • Terms and Conditions
  • Editors' login