Skip to main content
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Search
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Our ResearchOpen mainmenu item
    • Current topics from our research
    • Future Technologies
    • Energy and Climate
    • Health Innovation
    • Fundamentals of Nature
    • Large Research Facilities
    • Brochures
    • 5232 — The magazine of the Paul Scherrer Institute
    • Research Divisions & Labs (only english)
  • IndustryOpen mainmenu item
    • Overview
    • Technology Transfer
    • Expertise
    • Spin-off Companies
    • Park Innovaare
  • Proton TherapyOpen mainmenu item
    • Overview
    • Physician & Patient Information
  • CareerOpen mainmenu item
    • Overview
    • Job Opportunities
    • Working at PSI
    • Personnel Policy
    • Equal Opportunities, Diversity & Inclusion
    • Training and Further Education
    • Vocational Training
    • PSI Education Centre
    • Career Center
    • Support Program "PSI Career Return Program"
    • PSI-FELLOW/COFUND
  • Visit to PSIOpen mainmenu item
    • Overview
    • Visitor Centre psi forum
    • Schülerlabor iLab
    • Public Events
    • How to find us
  • About PSIOpen mainmenu item
    • PSI in brief
    • Strategy
    • Guiding principles
    • Facts and figures
    • Organisational structure
    • For the media
    • Suppliers and customers
    • Customers E-Billing
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

You are here:

  1. PSI Home
  2. Our Research
  3. Current topics from our research
  4. Rechargeable batteries that last longer and re-charge more rapidly

Secondary navigation

Our Research

  • Current topics from our research Expanded submenu item
    • Future Technologies
    • Energy and Climate
    • Health Innovation
    • Fundamentals of Nature
    • ESI Platform
    • Large research facilities
    • Project SLS 2.0
    • Topic Overview
    • Archive
  • 5232 – The magazine of the Paul Scherrer Institute
    • Contact
  • Brochures
  • Films
    • Virtual Tour
  • Social Media
    • PSI Community Guidelines
  • Media corner
    • Media Releases
×

Info message

This is a text from the PSI media archive. The contents may be out-of-date.
4 July 2016

Rechargeable batteries that last longer and recharge more rapidly

Media Releases Energy and Climate Materials Research

Materials researchers at the Swiss Paul Scherrer Institute PSI in Villigen and the ETH Zurich have developed a very simple and cost-effective procedure for significantly enhancing the performance of conventional Li-ion rechargeable batteries. The procedure is scalable in size, so the use of rechargeable batteries will be optimized in all areas of application—whether in wristwatches, smartphones, laptops or cars. Battery storage capacity will be significantly extended, and charging times reduced. The researchers reported on their results in the latest issue of the research journal Nature Energy.

Juliette Billaud, co-first author of the new study, and Claire Villevieille, head of the battery materials research group at the Paul Scherrer Institute. (Photo: Markus Fischer/Paul Scherrer Institute)
Juliette Billaud, co-first author of the new study, and Claire Villevieille, head of the battery materials research group at the Paul Scherrer Institute. (Photo: Markus Fischer/Paul Scherrer Institute)
The envolved scientists from ETH Zurich, left to right: André Studart, co-first author Florian Bouville, and Tommaso Magrini. (Photo: ETZ Zurich)
The envolved scientists from ETH Zurich, left to right: André Studart, co-first author Florian Bouville, and Tommaso Magrini. (Photo: ETZ Zurich)
Haphazardly arranged graphite flakes in a conventional anode (above left and center): lithium ions attempting to dock or return to the cathode are forced to take detours (above right). But if the graphite is subjected to a rotating magnetic field (below), the flakes in the suspension align themselves vertically in parallel formation. They keep this orientation after they have been dried (below centre). The ions have shorter paths (below right). (Graphics: Juliette Billaud, Florian Bouville, Tommaso Magrini…
Haphazardly arranged graphite flakes in a conventional anode (above left and center): lithium ions attempting to dock or return to the cathode are forced to take detours (above right). But if the graphite is subjected to a rotating magnetic field (below), the flakes in the suspension align themselves vertically in parallel formation. They keep this orientation after they have been dried (below centre). The ions have shorter paths (below right). (Graphics: Juliette Billaud, Florian Bouville, Tommaso Magrini/Paul Scherrer Institute, ETH Zurich)

It’s not necessary to re-invent the rechargeable battery in order to improve its performance. As Claire Villevieille, head of the battery materials research group at the Paul Scherrer Institute PSI says: In the context of this competitive field, most researchers concentrate on the development of new materials. In cooperation with colleagues at the ETH in Zurich, Villevieille and co-researcher Juliette Billaud took a different approach: We checked existing components with a view to fully exploiting their potential. Simply by optimizing the graphite anode – or negative electrode - on a conventional Li-ion battery, researchers were able to boost battery performance. Under laboratory conditions, we were able to enhance storage capacity by a factor of up to 3. Owing to their complex construction, commercial batteries will not be able to fully replicate these results. But performance will definitely be enhanced, perhaps by as much as 30 – 50 percent: further experiments should yield more accurate prognoses.

Researchers point out that in terms of industrial implementation, improving existing components has the great advantage of requiring less developmental input than a new battery design using new materials. As Villevieille says: We already have everything we need. If a manufacturer were willing to take on production, enhanced batteries could be ready for the market within one or two years. The procedure is simple, cost-effective and scalable for use on rechargeable batteries in all areas of application, from wristwatch to smartphone, from laptop to car. And it has the additional bonus of being transferable to other anode-cathode batteries such as those based on sodium.

Arranging the flakes

In this case, changing the way anodes work was the key to success. Anodes are made from graphite, i.e. carbon, arranged in tiny, densely packed flakes, comparable in appearance to dark grey cornflakes haphazardly compressed, as in a granola bar. When a Li-ion battery is charging, lithium ions pass from the cathode, or positive metal oxide electrode, through an electrolyte fluid to the anode, where they are stored in the graphite bar. When the battery is in use and thus discharging, the lithium ions pass back to the cathode but are forced to take many detours through the densely packed mass of graphite flakes, compromising battery performance.

These detours are largely avoidable if the flakes are arranged vertically during the anode production process so that they are massed parallel to one another, pointing from the electrode plane in the direction of the cathode. Adapting a method already used in the production of synthetic composite materials, this alignment was achieved by André Studart and a team of research experts in the field of material nanostructuration at the ETH Zurich. The method involves coating the graphite flakes with nanoparticles of iron oxide sensitive to a magnetic field and suspending them in ethanol. The suspended and already magnetized flakes are subsequently subjected to a magnetic field of 100 millitesla—about the strength of a fridge magnet. André Studart explains that by rotating the magnet during this process, the platelets not only align vertically but in parallel formation to one another, like books on a shelf. As a result, they are perfectly ordered, reducing the diffusion distances covered by the lithium ions to a minimum.

Shorter paths for the ions

Microscopic images show that if the magnet remains turned on during the ensuing drying process, the platelets keep their new orientation even when removed from the ethanol suspension. Instead of their formerly haphazard arrangement, the flakes in the compressed graphite bar are now parallel, enabling the lithium ions to flow much more easily and quickly, whilst also increasing storage capacity by allowing more ions to dock during the charging process. Claire Villevieille emphasizes that the chemical composition of batteries remains the same. The remaining iron oxide nanoparticles are negligible in quantity and do not influence battery function. All we did was optimise the anode structure.

Text: Jan Berndorff


About PSI

The Paul Scherrer Institute PSI develops, builds and operates large, complex research facilities and makes them available to the national and international research community. The institute's own key research priorities are in the fields of matter and materials, energy and environment and human health. PSI is committed to the training of future generations. Therefore about one quarter of our staff are post-docs, post-graduates or apprentices. Altogether PSI employs 2000 people, thus being the largest research institute in Switzerland. The annual budget amounts to approximately CHF 370 million. PSI is part of the ETH Domain, with the other members being the two Swiss Federal Institutes of Technology, ETH Zurich and EPFL Lausanne, as well as Eawag (Swiss Federal Institute of Aquatic Science and Technology), Empa (Swiss Federal Laboratories for Materials Science and Technology) and WSL (Swiss Federal Institute for Forest, Snow and Landscape Research).

(Stand 05/2016)

Further information
The key to charging a lithium-ion battery rapidly
Contact
Dr. Claire Villevieille, Head of research group Battery Materials, Electrochemical Energy Storage, Paul Scherrer Institute
Telephone: +41 56 310 24 10, e-mail: claire.villevieille@psi.ch [English, French]

Prof. Dr. André Studart, Research group for Complex Materials, ETH Zurich
Telephone: +41 44 633 70 50, e-mail: andre.studart@mat.ethz.ch [English]
Original Publication
Magnetically aligned graphite electrodes for high rate performance Li-ion batteries
J. Billaud, F. Bouville, T. Magrini, C. Villevieille, A.R. Studart
Nature Energy 4. Juli 2016 (online)
DOI: 10.1038/nenergy.2016.97

Sidebar

01/2023

5232 — The magazine of the Paul Scherrer Institute

01/2023
View in issuu.com
Download
Subscribe to our magazine

Follow PSI

 Twitter
 LinkedIn
 Youtube
 Facebook
 Instagram

All social media channels


Visitor Centre psi forum

Experience research live


The iLab School Laboratory

Experience Science - Explore Research

top

Footer

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Switzerland

Telephone: +41 56 310 21 11
Telefax: +41 56 310 21 99

How to find us
Contact

Visitor Centre psi forum
School Lab iLab (in German)
Center for Proton Therapy
PSI Education Centre
PSI Guest House
PSI Gastronomie (in German)
psi forum shop

Service & Support

  • Phone Book
  • User Office
  • Accelerator Status
  • PSI Publications
  • Suppliers
  • E-Billing
  • Computing
  • Safety (in German)

Career

  • Working at PSI
  • Job Opportunities
  • Training and further education
  • Career Center
  • Vocational Training (in German)
  • PSI Education Center

For the media

  • PSI in brief
  • Facts and Figures
  • Media corner
  • Media Releases
  • Social Media

Follow us: Twitter (in English) LinkedIn Youtube Facebook Instagram Issuu RSS

Footer legal

  • Imprint
  • Terms and Conditions
  • Editors' login