Supraleiter weisen Magneten den Weg

Forscher der Universität Freiburg (Schweiz) und des Paul Scherrer Instituts PSI entdecken neue Form der Koexistenz zwischen Supraleitung und Magnetismus.

Justin Hoppler (Doktorand, Uni Freiburg und PSI) und Jochen Stahn (PSI) bereiten die Neutronenmessung an dem Dünnschichtsystem vor.

Ferromagnetismus und Supraleitung vertragen sich eigentlich nicht. In herkömmlichen Materialien treten sie deshalb auch nicht gemeinsam auf. Eine Koexistenz lässt sich aber erzwingen, indem man abwechselnd dünne Schichten von Ferromagneten und Supraleitern anordnet. Forscher der Universität Freiburg (Schweiz) und des Paul Scherrer Instituts haben nun untersucht, was geschieht, wenn man dabei einen Hochtemperatur-Supraleiter verwendet. Ihr Ergebnis: der Hochtemperatur-Supraleiter gibt den Ton an und verändert den Zustand des Ferromagneten grundlegend. Über diese neue Variante im Wettstreit zwischen der Supraleitung und dem Ferromagnetismus berichten sie ab Montag, 16. Februar 2009 in der Online-Ausgabe des Wissenschafts-Journals Nature Materials.

Die Kompromisszustände, die sich aus dem Wettstreit zwischen Supraleitung und Ferromagnetismus ergeben, haben oft Eigenschaften, die für zukünftige technische Anwendungen nützlich sein könnten – z.B. für Quantencomputer.

Supraleitung dominiert Magnetismus: am Anfang des Experiments sind die ferromagnetischen Schichten (M) alle gleich stark magnetisiert (links). Wird das System soweit abgekühlt, dass die supraleitenden Schichten (S) ihren Widerstand verlieren, ändert sich die Magnetisierung schlagartig (rechts).

Wie dänische Bauklötze

Für ihre Untersuchungen haben die Forscher abwechselnd 10 Nanometer dünne Schichten aus dem Hochtemperatur-Supraleiter Y0.6Pr0.4Ba2Cu3O7 und dem Ferromagneten La2/3Ca1/3MnO3 angeordnet. Dabei nutzten wir aus, dass sich diese Oxide, ähnlich wie die berühmten dänischen Bauklötze, sehr gut aufeinander stapeln und so zu Schichtstrukturen von sehr hoher Qualität kombinieren lassen. erläutert PSI-Forscher Christof Niedermayer die Wahl der verwendeten Materialien.

Unerwartete Beeinflussung

Im Experiment waren anfangs alle ferromagnetischen Schichten gleich stark magnetisiert. Kühlten die Forscher ihre Probe aber so stark ab, dass die Supraleiterschichten ihren elektrischen Widerstand verloren, änderte sich die Magnetisierung schlagartig: nun war jede zweite Schicht fast doppelt so stark magnetisiert wie zuvor, die anderen so gut wie gar nicht mehr. Die Forscher erklären sich diesen überraschenden Effekt damit, dass es in dem magnetischen Material mehrere mögliche Zustände gibt. Welcher tatsächlich angenommen wird, hängt sehr empfindlich von den äusseren Bedingungen ab – etwa von dem Übergang zur Supraleitung in den Nachbarschichten. Dass das den Effekt erklären könnte, zeigt sich auch darin, dass er von weiteren Faktoren abhängt wie den inneren Spannungen im Substrat, also der Unterlage, auf der die Schichten aufgetragen sind. Diese Schichtsysteme untersuchten die Forscher an der Neutronenquelle SINQ des Paul Scherrer Instituts. Dabei nutzten sie aus, dass polarisierte Neutronen magnetische Strukturen im Inneren einer Probe mit atomarer Genauigkeit bestimmen können.

Anwendung?

Dünnschichtsysteme aus magnetischen Materialien haben dank ihrer ungewöhnlichen Eigenschaften die moderne Elektronik revolutioniert und so könnte auch dieser neue Effekt interessante Anwendungen finden. Welchen konkreten Nutzen diese Systeme haben, wird erst die Zukunft zeigen. Unsere Arbeit zeigt aber zumindest, dass Schichtstrukturen aus Oxiden ein erstaunlich umfangreiches Repertoire an ungewöhnlichen Eigenschaften zu bieten haben. betont Prof. Christian Bernhard vom Fribourg Center for Nanomaterials – FriMat der Universität Freiburg.

Dr. Jochen Stahn
Laboratory for Neutron Scattering
ETH Zurich & Paul Scherrer Institut PSI

+41 56 310 2518
Jochen.Stahn@psi.ch 

 

Prof. Dr. Christian Bernhard
Department of Physics and Fribourg Center for Nanomaterials – FriMat
University of Fribourg, Chemin du Musée 3
CH-1700 Fribourg

+41 26 300 90 70
Christian.Bernhard@unifr.ch

  • Hoppler J, Stahn J, Niedermayer C, Malik VK, Bouyanfif H, Drew AJ, et al.
    Giant superconductivity-induced modulation of the ferromagnetic magnetization in a cuprate-manganite superlattice
    Nature Materials. 2009; 8(4): 315-319. https://doi.org/10.1038/nmat2383
    DORA PSI

Über das PSI

Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Zukunftstechnologien, Energie und Klima, Health Innovation und Grundlagen der Natur. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 2300 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 460 Mio. Das PSI ist Teil des ETH-Bereichs, dem auch die ETH Zürich und die ETH Lausanne angehören sowie die Forschungsinstitute Eawag, Empa und WSL. (Stand 06/2024)