Skip to main content
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Search
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Our ResearchOpen mainmenu item
    • Current topics from our research
    • Future Technologies
    • Energy and Climate
    • Health Innovation
    • Fundamentals of Nature
    • Large Research Facilities
    • Brochures
    • 5232 — The magazine of the Paul Scherrer Institute
    • Research Divisions & Labs (only english)
  • IndustryOpen mainmenu item
    • Overview
    • Technology Transfer
    • Expertise
    • Spin-off Companies
    • Park Innovaare
  • Proton TherapyOpen mainmenu item
    • Overview
    • Physician & Patient Information
  • CareerOpen mainmenu item
    • Overview
    • Job Opportunities
    • Working at PSI
    • Personnel Policy
    • Equal Opportunities, Diversity & Inclusion
    • Training and Further Education
    • Vocational Training
    • PSI Education Centre
    • Career Center
    • Support Program "PSI Career Return Program"
    • PSI-FELLOW/COFUND
  • Visit to PSIOpen mainmenu item
    • Overview
    • Visitor Centre psi forum
    • Schülerlabor iLab
    • Public Events
    • How to find us
  • About PSIOpen mainmenu item
    • PSI in brief
    • Strategy
    • Guiding principles
    • Facts and figures
    • Organisational structure
    • For the media
    • Suppliers and customers
    • Customers E-Billing
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

You are here:

  1. PSI Home
  2. Our Research
  3. Current topics from our research
  4. Swissmedic grants operating licence for new radiopharmaceutical production facility

Secondary navigation

Our Research

  • Current topics from our research Expanded submenu item
    • Future Technologies
    • Energy and Climate
    • Health Innovation
    • Fundamentals of Nature
    • ESI Platform
    • Large research facilities
    • Project SLS 2.0
    • Topic Overview
    • Archive
  • 5232 – The magazine of the Paul Scherrer Institute
    • Contact
  • Brochures
  • Films
    • Virtual Tour
  • Social Media
    • PSI Community Guidelines
  • Media corner
    • Media Releases
25 July 2022

Swissmedic grants operating licence for new radiopharmaceutical production facility

Health Innovation Medical Science Radiopharmacy

The new pharmaceutical laboratory for the manufacture of radiopharmaceuticals at PSI is ready for production. With its three state-of-the-art production units, novel and innovative drugs can be brought rapidly into clinical use.

Susanne Geistlich
Susanne Geistlich, head of the Clinical Drug Supply Group at PSI, working at one of the filling systems at the new pharmaceutical laboratory. In these cells, vials are filled with the radiopharmaceuticals. The aseptic environment and a special filter system ensure a sterile product.
(Photo: Paul Scherrer Institute/Mahir Dzambegovic)
Susanne Geistlich checks a hygiene-monitoring sample for sterility. The aseptic production of sterile medicines demands effective hygienic measures in the rooms and among the staff.
Susanne Geistlich checks a hygiene-monitoring sample for sterility. The aseptic production of sterile medicines demands effective hygienic measures in the rooms and among the staff.
(Photo: Paul Scherrer Institute/Mahir Dzambegovic)

At PSI, with the help of a new facility, small batches of highly specific drugs will be produced in future. These will be delivered directly to hospitals for use in treating tumour patients.

For more than 20 years, in collaboration with ETH Zurich, PSI researchers have been developing new drugs for the diagnosis and treatment of tumours, so-called radiopharmaceuticals. These consist primarily of two components: a radioactive substance, the so-called radionuclide, and a biomolecule that functions as its carrier. The biomolecule is designed to dock at specific surface structures of cancer cells, thus, delivering the radionuclide to the tumour it targets. Depending on the type of radioactive decay of the radionuclide in question, the radiation emitted can either localise the tumour or attack the cancerous tissue.

The path from laboratory to clinic

It is a highly demanding and time-consuming task to search out suitable surface structures and combine the radionuclides with the appropriate biomolecules. In addition, processes must be developed that ensure clean and safe production of these substances under Good Manufacturing Practice (GMP) – which is defined by law – so that they can be used in the clinic. Susanne Geistlich, head of the Clinical Drug Supply Group at PSI, explains: "Before the drug is approved, the substances developed in the laboratory first have to prove themselves in clinical studies. The production of high-quality and reproducible drugs is essential to ensure the safety of patients and the reliability of the studies."

Radiopharmaceuticals are administered intravenously. To prevent contamination, for example with germs, the medication must be sterile. However, thermal sterilisation processes such as the standard ones used in drug production are time-consuming. Since radiopharmaceuticals only have a very short expiry date, determined by the so-called half-life of the radionuclide from a few minutes to a few days, they would mostly be unusable after such a procedure. To guarantee sterile products, the manufacturing process must be free of contamination and the entire laboratory must meet the highest hygiene regulations. Additionally, the filling systems are located in aseptic cells. Here, the injection doses are filled directly into product vials through sterile filters. The fine pores of the filters remove any germs from the product.

The short half-life of the radionuclides also rules out production for storage. As a result, the radiopharmaceuticals are only produced according to patient requirements and ordered for a specific time of injection.

Specialised production facility at a unique location

The high demands placed on rapid, high-quality drug production require not only know-how, but also the necessary infrastructure. The new pharmaceutical laboratory, which has now been granted an operating licence by the Swiss Agency for Therapeutic Products (Swissmedic), offers three state-of-the-art production units to meet the requirements of good manufacturing practice.

The three units to be operated are radionuclide-specific. This allows different biomolecules to be combined with one radionuclide per unit. To produce the radionuclides, the Centre for Radiopharmaceutical Sciences can use the particle accelerators at PSI’s large research facilities. While hospitals, such as the University Hospital Zurich, use compact, standardised medical cyclotrons for this purpose, the development of novel substances, as is the case at PSI, requires innovative systems that offer a wide range of accelerated particles and energies. This shows the potential of the unique laboratory infrastructure at PSI. "The immediate proximity to the large research facilities enables us to keep developing new drugs and to produce them directly onsite towards clinical studies," says Susanne Geistlich.

With PARK INNOVAARE, there is also an exciting opportunity for industry to settle in the immediate vicinity of the PSI. In future, the state-of-the-art campus will offer space for large established companies, small- to medium-size enterprises, and start-ups, which can use the infrastructure at PSI to bring innovative medicines to the clinics more efficiently. With its new production facility, PSI offers an attractive location to promote research on new radiopharmaceuticals, as well as to develop them and bring them to market.

Text: Paul Scherrer Institute/Benjamin A. Senn

Further information

  • Effective combination cancer treatment – media release from 15 December 2021
  • Novel and emerging medical radionuclides – media release from 23 September 2021
  • More effective treatment of thyroid cancer – text from 5 October 2020
  • Brilliant medicines – text from 26 November 2019
  • Cancer medicine using PSI’s neutron source – text from 21 November 2019

Contact

Susanne Geistlich
Clinical Drug Supply
Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
Telephone: +41 56 310 28 84, e-mail: susanne.geistlich@psi.ch [German, English]

Copyright

PSI provides image and/or video material free of charge for media coverage of the content of the above text. Use of this material for other purposes is not permitted. This also  includes the transfer of the image and video material into databases as well as sale by third parties.

Sidebar

01/2023

5232 — The magazine of the Paul Scherrer Institute

01/2023
View in issuu.com
Download
Subscribe to our magazine

Follow PSI

 Twitter
 LinkedIn
 Youtube
 Facebook
 Instagram

All social media channels


Visitor Centre psi forum

Experience research live


The iLab School Laboratory

Experience Science - Explore Research

top

Footer

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Switzerland

Telephone: +41 56 310 21 11
Telefax: +41 56 310 21 99

How to find us
Contact

Visitor Centre psi forum
School Lab iLab (in German)
Center for Proton Therapy
PSI Education Centre
PSI Guest House
PSI Gastronomie (in German)
psi forum shop

Service & Support

  • Phone Book
  • User Office
  • Accelerator Status
  • PSI Publications
  • Suppliers
  • E-Billing
  • Computing
  • Safety (in German)

Career

  • Working at PSI
  • Job Opportunities
  • Training and further education
  • Career Center
  • Vocational Training (in German)
  • PSI Education Center

For the media

  • PSI in brief
  • Facts and Figures
  • Media corner
  • Media Releases
  • Social Media

Follow us: Twitter (in English) LinkedIn Youtube Facebook Instagram Issuu RSS

Footer legal

  • Imprint
  • Terms and Conditions
  • Editors' login