Skip to main content
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Search
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Our ResearchOpen mainmenu item
    • Current topics from our research
    • Future Technologies
    • Energy and Climate
    • Health Innovation
    • Fundamentals of Nature
    • Large Research Facilities
    • Brochures
    • 5232 — The magazine of the Paul Scherrer Institute
    • Research Divisions & Labs (only english)
  • IndustryOpen mainmenu item
    • Overview
    • Technology Transfer
    • Expertise
    • Spin-off Companies
    • Park Innovaare
  • Proton TherapyOpen mainmenu item
    • Overview
    • For patients and family members
    • For physicians, referrers and researchers
  • CareerOpen mainmenu item
    • Overview
    • Job Opportunities
    • Working at PSI
    • Personnel Policy
    • Equal Opportunities, Diversity & Inclusion
    • Training and Further Education
    • Vocational Training
    • PSI Education Centre
    • Career Center
    • Support Program "PSI Career Return Program"
    • PSI-FELLOW/COFUND
  • Visit to PSIOpen mainmenu item
    • Overview
    • Visitor Centre psi forum
    • Schülerlabor iLab
    • Public Events
    • How to find us
  • About PSIOpen mainmenu item
    • PSI in brief
    • Strategy
    • Guiding principles
    • Facts and figures
    • Organisational structure
    • For the media
    • Suppliers and customers
    • Customers E-Billing
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

You are here:

  1. PSI Home
  2. Our Research
  3. Current topics from our research
  4. Benzin aus Wasser, CO2 und Sonnenlicht

Secondary navigation

Our Research

  • Current topics from our research Expanded submenu item
    • Future Technologies
    • Energy and Climate
    • Health Innovation
    • Fundamentals of Nature
    • ESI Platform
    • Large research facilities
    • Project SLS 2.0
    • Topic Overview
    • Archive
  • 5232 – The magazine of the Paul Scherrer Institute
    • Contact
  • Brochures
  • Films
    • Video series #ThankYouSLS
    • Video series Energy Future
    • Virtual Tour
  • Social Media
    • PSI Community Guidelines
  • Media corner
    • Media Releases
×

Info message

This is a text from the PSI media archive. The contents may be out-of-date.
4 January 2011

Benzin aus Wasser, CO2 und Sonnenlicht

Media Releases Energy and Climate Renewable Energies

Neuartiger Solar-Reaktor entwickelt

Einem Forschungsteam um Aldo Steinfeld, Professor an der ETH Zürich und Laborleiter am Paul Scherrer Institut PSI, ist es gelungen, mit Solarenergie aus Wasser und Kohlendioxid Treibstoff zu erzeugen. Dazu haben die Wissenschaftler einen Solar-Reaktor entwickelt, in dem konzentrierte Sonnenstrahlung das dafür nötige stabile und schnelle thermochemische Verfahren antreibt. Sonnenenergie ist sauber und steht unbegrenzt zur Verfügung; sie ist aber nicht dauernd verfügbar sowie ungleichmässig über die Erdoberflache verteilt. Weltweit stellen sich Wissenschaftler deshalb die Frage: Wie kann man Sonnenenergie speichern, um diese von den sonnigsten Flecken der Erde in die industrialisierten Zentren zu transportieren, wo die meiste Energie benötigt wird? Diese Frage motiviert Forscher nach Rezepten zu suchen, wie Sonnenlicht in chemische Energieträger umgewandelt werden kann, und zwar in Form von flüssigen Treibstoffen, die über lange Zeit gespeichert und über weite Distanzen transportiert werden können − Treibstoffe notabene, die nicht nur Autos, Schiffe und Flugzeuge antreiben, sondern die gesamte nach Öl lechzende Weltwirtschaft nachhaltig versorgen können.

Neuartiger Solar-Reaktor gebaut

Professor Aldo Steinfeld  und Doktorand Philipp Furler verfolgen ein Experiment mit ihrem solaren thermochemischen Reaktor zur Treibstoffgewinnung aus Wasser und CO2 am Hochfluss-Solarsimulator der ETH Zürich. Die Experimente, auf denen die dargestellten Ergebnisse beruhen, wurden am Hochfluss-Solarsimulator des Paul Scherrer Instituts durchgeführt. (Bild: Peter Rüegg / ETH Zürich)
Professor Aldo Steinfeld und Doktorand Philipp Furler verfolgen ein Experiment mit ihrem solaren thermochemischen Reaktor zur Treibstoffgewinnung aus Wasser und CO2 am Hochfluss-Solarsimulator der ETH Zürich. Die Experimente, auf denen die dargestellten Ergebnisse beruhen, wurden am Hochfluss-Solarsimulator des Paul Scherrer Instituts durchgeführt. (Bild: Peter Rüegg / ETH Zürich)
Schema des Solar-Reaktors für den zweistufigen thermochemischen Kreisprozess zur Herstellung von solaren Treibstoffen. Die Reaktorkonfiguration besteht aus einem Hohlraum-Receiver, der einen porösen, monolithischen Ceriumoxid-Zylinder beinhaltet. Konzentrierte Sonnenstrahlung tritt durch eine mit einem transparenten Quarzglas abgedichtete Blendenöffnung ein und trifft auf das Ceriumoxid an der Innenwand des Reaktors. Reaktionsgase strömen radial über das poröse Ceriumoxid, während die Produktgase die Kavit…
Schema des Solar-Reaktors für den zweistufigen thermochemischen Kreisprozess zur Herstellung von solaren Treibstoffen. Die Reaktorkonfiguration besteht aus einem Hohlraum-Receiver, der einen porösen, monolithischen Ceriumoxid-Zylinder beinhaltet. Konzentrierte Sonnenstrahlung tritt durch eine mit einem transparenten Quarzglas abgedichtete Blendenöffnung ein und trifft auf das Ceriumoxid an der Innenwand des Reaktors. Reaktionsgase strömen radial über das poröse Ceriumoxid, während die Produktgase die Kavität durch ein axiales Auslassrohr verlassen. Rote Pfeile bezeichnen die Reduktion von Ceriumoxids (Sauerstoffabgabe); blaue Pfeile bezeichnen die Oxidation (Herstellung des Treibstoffs). Der Einsatz zeigt eine rasterelektronenmikroskopische Aufnahme des porösen Ceriumoxids nach 23 Zyklen. (Bild: ETH Zürich)

Einem Forschungsteam um Aldo Steinfeld, Professor für Erneuerbare Energieträger an der ETH Zürich und Leiter des Labors für Solartechnik am Paul Scher-rer Institut (PSI), ist es nun gelungen, ein solches Rezept inklusive "Kochtopf" − sprich Solar-Reaktor − zu entwickeln. Mit einem radikal neuen Prozess wird Wasser (H2O) und Kohlendioxid (CO2) umgewandelt in ein Gemisch von Wasserstoff (H2) und Kohlenmonoxid (CO). Diese Kombination wird als Syngas bezeichnet und stellt eine Vorstufe von Benzin, Kerosin und anderen flüssigen Treibstoffen dar. Gemeinsam mit Kollegen des California Institute of Technology (Caltech) stellen die ETH- und PSI-Forscher den neuen Solar-Reaktor sowie die experimentellen Resultate in der Fachzeitschrift Science vor.

Die zugrundeliegende Idee besteht darin, Wasser und CO2 in einem zweistufigen Verfahren mit Hilfe von Sonnenenergie aufzuspalten. In einem ersten Schritt lenken die Wissenschaftler konzentriertes Sonnenlicht durch eine mit einem Quarzglas abgedichtete Blendenöffnung in den Solar-Reaktor. In dessen Hohlraum befindet sich ein Zylinder aus Ceriumoxid, der bei einer Temperatur von 1500°C reduziert wird. Dabei gibt das Material Sauerstoffatome aus der Struktur ab. Im zweiten, Schritt lässt man das reduzierte Ceriumoxid bei etwa 900°C mit Wasserdampf und CO2 reagieren; dabei werden die Wasser- und CO2-Moleküle aufgebrochen. Die dabei freiwerdenden Sauerstoffatome werden in die Materialstruktur integriert, sodass das Ceriumoxid wieder in der Ausgangsform vorliegt und der Kreisprozess erneut gestartet werden kann. Übrig bleibt reines Syngas aus H2 und CO.

Mit der Kraft von 1500 Sonnen

Die Wissenschaftler testeten ihren Reaktor-Prototyp am Hochfluss-Solarsimulator des PSI. Dabei verwendeten sie eine Strahlungsintensität, die der Kraft von 1500 Sonnen entspricht. Der Umwandlungwirkungsgrad von Sonnenenergie in Treibstoff betrug dabei 0,8 Prozent. Dieser Wert ergibt sich aus dem Brennwert des produzierten Syngas, geteilt durch den Input an Strahlungsenergie. Diese Wirkungsgrade sind um zwei Grössenordnungen höher als diejenigen, die man mit herkömmlichen photokatalytischen Methoden zur CO2-Spaltung erzielt hat, erklärt Aldo Steinfeld und betont: Die Resultate, die wir in Science veröffentlichen, belegen die Machbarkeit von solarbetriebenen thermochemischen Verfahren zur Herstellung von Treibstoff aus Kohlendioxid und Wasser.

Zurzeit sind Steinfeld und seine Gruppe daran, den Solar-Reaktor so zu optimieren, dass er auch in grossem Massstab − im Megawatt-Bereich − in Solarturm-Anlagen eingesetzt werden kann. Solche Anlagen sind bereits kommerziell zur Stromerzeugung im Einsatz. Steinfeld glaubt, dass noch grosse Anstrengungen nötig sind, bevor seine Solarreaktortechnologie in der Praxis eingesetzt wird. 2020 sollten wir aber soweit sein, dass die erste industrielle Solartreibstoff-Anlage in Betrieb gehen und einen zentralen Beitrag zur nachhaltigen Energieerzeugung der Zukunft leisten kann.

Text: ETH Zürich


Über das PSI

Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Festkörperforschung und Materialwissenschaften, Elementarteilchenphysik, Biologie und Medizin, Energie- und Umweltforschung. Mit 1400 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

Kontakt / Ansprechpartner
Prof. Dr. Aldo Steinfeld
Am PSI: Labor für Solartechnik, 5232 Villigen PSI, Schweiz,
Telefon: +41 56 310 31 24, E-Mail: aldo.steinfeld@psi.ch

An der ETH: Institut für Energietechnik, ML J 42.1, Sonneggstr. 3, 8092 Zürich, Schweiz,
Telefon: +41 44 633 93 78; +41 44 632 79 29, E-mail: aldo.steinfeld@eth.ch
Originalveröffentlichung
High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O using Nonstoichiometric Ceria
Chueh WC, Falter C, Abbott M, Scipio D, Furler P, Haile SM, Steinfeld A.
Science: Vol. 330. no. 6012 pp. 1797-1801
DOI: 10.1126/science.1197834
Bildmaterial
Am solaren thermochemischen Reaktor zur Treibstoffgewinnung aus Wasser und CO2 am Hochfluss-Solarsimulator der ETH Zürich
Am solaren thermochemischen Reaktor zur Treibstoffgewinnung aus Wasser und CO2 am Hochfluss-Solarsimulator der ETH Zürich
Schema des Solar-Reaktors für den zweistufigen thermochemischen Kreisprozess zur Herstellung von solaren Treibstoffen.
Schema des Solar-Reaktors für den zweistufigen thermochemischen Kreisprozess zur Herstellung von solaren Treibstoffen.

Mit Klick auf das Download-Icon können Sie die hoch aufgelöste Version herunterladen.

Sidebar

5232 3/2023

5232 — The magazine of the Paul Scherrer Institute

03/2023
View in issuu.com
Download
Subscribe to our magazine

Follow PSI

 Twitter
 LinkedIn
 Youtube
 Facebook
 Instagram

All social media channels


Visitor Centre psi forum

Experience research live


The iLab School Laboratory

Experience Science - Explore Research

top

Footer

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Switzerland

Telephone: +41 56 310 21 11
Telefax: +41 56 310 21 99

How to find us
Contact

Visitor Centre psi forum
School Lab iLab (in German)
Center for Proton Therapy
PSI Education Centre
PSI Guest House
PSI Gastronomie (in German)
psi forum shop

Service & Support

  • Phone Book
  • User Office
  • Accelerator Status
  • PSI Publications
  • Suppliers
  • E-Billing
  • Computing
  • Safety (in German)

Career

  • Working at PSI
  • Job Opportunities
  • Training and further education
  • Career Center
  • Vocational Training (in German)
  • PSI Education Center

For the media

  • PSI in brief
  • Facts and Figures
  • Media corner
  • Media Releases
  • Social Media

Follow us: Twitter (in English) LinkedIn Youtube Facebook Instagram Issuu RSS

Footer legal

  • Imprint
  • Terms and conditions / Privacy policy
  • Editors' login