Direkt zum Inhalt
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Suche
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Unsere ForschungÖffnen dieses Hauptmenu Punktes
    • Aktuelles aus unserer Forschung
    • Zukunftstechnologien
    • Energie und Klima
    • Health Innovation
    • Grundlagen der Natur
    • Grossforschungsanlagen
    • Broschüren
    • 5232 — Das Magazin des Paul Scherrer Instituts
    • Research Divisions & Labs (only english)
  • IndustrieÖffnen dieses Hauptmenu Punktes
    • Übersicht
    • Technologietransfer
    • Kompetenzen
    • Spin-off-Firmen
    • Park Innovaare
  • Protonentherapie Öffnen dieses Hauptmenu Punktes
    • Übersicht
    • Für Patienten und Angehörige
    • Für Ärzte, Zuweiser und Forschende
  • KarriereÖffnen dieses Hauptmenu Punktes
    • Übersicht
    • Stellenangebote
    • Arbeiten am PSI
    • Personalpolitik
    • Chancengleichheit, Diversität & Inklusion
    • Aus- und Weiterbildung
    • Berufsbildung / Lehrstellen
    • PSI Bildungszentrum
    • Career Center
    • Förderprogramm "PSI Career Return Program"
    • PSI-FELLOW/COFUND
  • Besuch am PSIÖffnen dieses Hauptmenu Punktes
    • Übersicht
    • Besucherzentrum psi forum
    • Schülerlabor iLab
    • Veranstaltungen am PSI
    • Der Weg zu uns
  • Über das PSIÖffnen dieses Hauptmenu Punktes
    • Das PSI in Kürze
    • Strategie
    • Leitbilder
    • Zahlen und Fakten
    • Organisation
    • Für die Medien
    • Für Lieferanten
    • Für Kunden (E-Billing)
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

Sie befinden sich hier:

  1. PSI Home
  2. Unsere Forschung
  3. Aktuelles aus unserer Forschung
  4. So beginnt das Sehen

Sekundäre Navigation

Unsere Forschung

  • Aktuelles aus unserer Forschung Ausgeklappter Submenü Punkt
    • Zukunftstechnologien
    • Energie und Klima
    • Health Innovation
    • Grundlagen der Natur
    • ESI-Plattform
    • Grossforschungsanlagen
    • Projekt SLS 2.0
    • Themenübersicht
    • Archiv
  • 5232 — Das Magazin des Paul Scherrer Instituts
    • Kontakt/Redaktion
  • Broschüren
  • Filme
    • Virtuelle Tour
  • Social Media
    • PSI-Netiquette
  • Für die Medien
    • Medienmitteilungen
22. März 2023

So beginnt das Sehen

Medienmitteilungen SwissFEL Biologie Health Innovation

Forschende am Paul Scherrer Institut PSI haben den molekularen Vorgang entschlüsselt, der als Allererstes im Auge abläuft, wenn Licht auf die Netzhaut trifft. Die Vorgänge, die in einem Bruchteil einer billionstel Sekunde ablaufen, sind die Voraussetzung dafür, dass wir sehen können. Die Studie ist im Fachjournal Nature erschienen.

PSI-Forscherin Valérie Panneels reinigt das rote Protein Rhodopsin, um es später am Freie-Elektronen-Röntgenlaser SwissFEL zu untersuchen.
PSI-Forscherin Valérie Panneels reinigt das rote Protein Rhodopsin, um es später am Freie-Elektronen-Röntgenlaser SwissFEL zu untersuchen.
(Foto: Scanderbeg Sauer Photography)
Gebhard Schertler, Leiter des PSI-Bereichs Biologie und Chemie.
Gebhard Schertler, Leiter des PSI-Bereichs Biologie und Chemie. Mit abgebildet ist das Molekül Retinal, das beim Lichteinfall in unser Auge seine Form verändert und so den Sehvorgang in Gang setzt.
(Foto: Scanderbeg Sauer Photography)

Es ist nur eine winzige Veränderung eines Proteins in unserer Netzhaut: Diese Änderung findet innerhalb einer unglaublich kleinen Zeitspanne statt und ist der Auslöser dafür, dass wir Licht wahrnehmen und sehen. Dies ist auch der einzige vom Licht abhängige Schritt. Was genau nach der allerersten billionstel Sekunde der visuellen Wahrnehmung passiert, haben PSI-Forschende nun mithilfe des Schweizer Freie-Elektronen-Röntgenlasers SwissFEL am PSI untersucht.

Im Mittelpunkt des Geschehens steht unser Lichtrezeptor, das Protein Rhodopsin. Im menschlichen Auge wird es von spezialisierten Sinneszellen hergestellt, den Stäbchenzellen, die Licht wahrnehmen. In der Mitte des Rhodopsins ist ein kleines geknicktes Molekül gebunden: Retinal, Abkömmling des Vitamin A. Trifft Licht auf das Protein, absorbiert Retinal einen Teil der Lichtenergie. Blitzschnell verändert es dann seine dreidimensionale Gestalt. Der Schalter im Auge wird so von «Aus» auf «Ein» umgelegt. Daraufhin läuft eine Kaskade von Reaktionen ab, die letztendlich damit endet, dass wir einen Lichtblitz wahrnehmen.

Gebunden und doch frei

Was aber passiert im Detail, wenn sich Retinal von der sogenannten 11-cis-Form in die All-trans-Form umwandelt? „Ausgangspunkt und Endprodukt der Retinalumwandlung sind schon lange bekannt, aber noch nie hat jemand in Echtzeit beobachtet, wie genau die Veränderung am Sehpigment Rhodopsin abläuft“, sagt Valérie Panneels, Wissenschaftlerin im Forschungsbereich Biologie und Chemie am PSI.

Panneels vergleicht das Geschehen mit einer Katze, die mit dem Rücken voran vom Baum fällt und am Ende unbeschadet auf ihren Füssen landet. «Die Frage ist: Welche Zustände nimmt die Katze während ihres Falls ein, also während sie sich vom Rücken auf den Bauch dreht?»

Wie die PSI-Forschenden herausfanden, beginnt die Retinal-Katze sich zuerst mit ihrer Körpermitte zu drehen. Der «Wow-Effekt» war für Valerie Panneels der Moment, als sie realisierte, was ausserdem passiert: Das Protein nimmt einen Teil der Lichtenergie auf, um sich kurzzeitig minimal aufzublähen − «ähnlich wie unser Brustkorb, der sich beim Einatmen ausdehnt, um sich kurz darauf wieder zusammenzuziehen.»

Während dieses «Aufatmens» verliert das Protein vorübergehend den grössten Teil seines Kontakts zum Retinal, das in seiner Mitte sitzt. «Retinal ist an seinen Enden zwar noch immer über chemische Bindungen ans Protein gebunden, aber es hat nun Platz genug, um sich zu drehen.» Das Molekül ähnelt in dem Moment einem Hund, der nur locker angeleint ist und einen Satz macht.

Kurze Zeit später zieht das Protein sich wieder zusammen und hat auch sein Retinal erneut fest im Griff, jetzt aber mit einer anderen, eher verlängerten Form. «So schafft das Retinal es, sich zu drehen – ganz unbehelligt von dem Protein, in dem es steckt.»

Eines der schnellsten Ereignisse in der Natur

Die Umwandlung des Retinals von der geknickten 11-cis-Form in die verlängerte All-trans-Form dauert nur eine Pikosekunde, also ein millionstel Teil einer millionstel Sekunde. Damit ist es einer der schnellsten Vorgänge in der Natur überhaupt.

So schnelle biologische Vorgänge lassen sich mit einem Freie-Elektronen-Röntgenlaser wie dem SwissFEL aufzeichnen und analysieren. «Der SwissFEL erlaubt uns, grundlegende Prozesse unseres Körpers − wie den Sehprozess − im Detail zu studieren», sagt Gebhard Schertler, Leiter des PSI-Forschungsbereichs Biologie und Chemie und gemeinsam mit Valérie Panneels Letztautor der Studie.

In Analogie mit der Katze wäre das so, als würde man deren Fall mit einer Hochgeschwindigkeitskamera filmen. Allerdings: Die SwissFEL-Kamera filmt sogar noch Milliarden Mal schneller. Auch gehört bei Grossforschungsanlagen etwas mehr dazu, als auf den Auslöseknopf zu drücken. So verbrachte Doktorand Thomas Gruhl, später Postdoktorand am Institute for Structural and Molecular Biology in London, Jahre damit, eine Methode zu entwickeln, um hochqualitative Rhodopsinkristalle zu gewinnen, welche höchstaufgelöste Daten lieferten. Nur mit diesen war es schliesslich möglich, die nötigen Messungen am SwissFEL und − vor dem Bau des SwissFEL − am Freie-Elektronen-Röntgenlaser SACLA in Japan durchzuführen.

Dieses Experiment zeigt erneut, wie bedeutsam der SwissFEL für die Forschung in der Schweiz ist. «Wir werden mit ihm wahrscheinlich noch viele andere Fragen lösen», sagt Gebhard Schertler. «Unter anderem entwickeln wir Methoden, um auch dynamische Prozesse in Proteinen zu untersuchen, die normalerweise nicht mit Licht aktiviert werden.» Die Forschenden machen solche Moleküle künstlich lichtaktivierbar: Entweder verändern sie die Bindungspartner entsprechend oder aber sie mischen Proteine mit Bindungspartnern im Kristall so schnell, dass sie sich am SwissFEL untersuchen lassen. In jedem Fall ist es auch hier komplizierter, als nur die Kamera auf eine vom Baum stürzende Katze zu richten.

Text: Brigitte Osterath


Über das PSI

Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 2200 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 400 Mio. Das PSI ist Teil des ETH-Bereichs, dem auch die ETH Zürich und die ETH Lausanne angehören sowie die Forschungsinstitute Eawag, Empa und WSL. (Stand 03/2022)

Kontakt

Dr. Valérie Panneels
Forschungsbereich Biologie und Chemie

Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Schweiz
Telefon: +41 56 310 21 04, E-Mail: valerie.panneels@psi.ch [Deutsch, Englisch, Französisch]

Prof. Dr. Gebhard Schertler
Leiter des Forschungsbereichs Biologie und Chemie
Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Schweiz
Telefon: +41 56 310 42 65, E-Mail: gebhard.schertler@psi.ch [Deutsch, Englisch]

Originalveröffentlichung

Ultrafast structural changes direct the first molecular events of vision
Thomas Gruhl, Tobias Weinert, Matthew Rodrigues, Christopher J Milne, Giorgia Ortolani, Karol Nass, Eriko Nango, Saumik Sen, Philip J M Johnson, Claudio Cirelli, Antonia Furrer, Sandra Mous, Petr Skopintsev, Daniel James, Florian Dworkowski, Petra Baath, Demet Kekilli, Dmitry Ozerov, Rie Tanaka, Hannah Glover, Camila Bacellar, Steffen Brünle, Cecilia M Casadei, Azeglio D Diethelm, Dardan Gashi, Guillaume Gotthard, Ramon Guixà-González,   Yasumasa Joti, Gregor Knopp, Elena Lesca, Pikyee Ma, Isabelle Martiel, Jonas Mühle, Shigeki Owada, Filip Pamula, Daniel Sarabi, Oliver Tejero, Ching-Ju Tsai, Niranjan Varma, Anna Wach, Sébastien Boutet, Kensuke Tono, Przemyslaw Nogly, Xavier Deupi, So Iwata, Richard Neutze, Jörg Standfuss, Gebhard Schertler, Valerie Panneels

Nature, 22.03.2023 (online)
DOI: 10.1038/s41586-023-05863-6

Nutzungsrechte

Das PSI stellt Bild- und/oder Videomaterial für eine Berichterstattung über den Inhalt des obigen Textes in den Medien kostenfrei zur Verfügung. Eine Verwendung dieses Materials für andere Zwecke ist nicht gestattet. Dazu gehören auch die Übernahme des Bild- und Videomaterials in Datenbanken sowie ein Verkauf durch Dritte.

Mit Sidebar

01/2023

5232 — Das Magazin des Paul Scherrer Instituts

01/2023
Öffnen in issuu.com
Herunterladen
Magazin abonnieren

Follow PSI

 Twitter
 LinkedIn
 Youtube
 Facebook
 Instagram

Alle Social Media Kanäle


Besucherzentrum psi forum

Forschung live erleben


Schülerlabor iLab

Erlebnis Wissenschaft - Abenteuer Forschung

top

Fussbereich

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Schweiz

Telefon: +41 56 310 21 11
Telefax: +41 56 310 21 99

Der Weg zu uns
Kontakt

Besucherzentrum psi forum
Schülerlabor iLab
Zentrum für Protonentherapie
PSI Bildungszentrum
PSI Guest House (in english)
PSI Gastronomie
psi forum-Shop

 

Service & Support

  • Telefonbuch
  • User Office
  • Accelerator Status
  • Publikationen des PSI
  • Lieferanten
  • E-Rechnung
  • Computing
  • Sicherheit

Karriere

  • Arbeiten am PSI
  • Stellenangebote
  • Aus- und Weiterbildung
  • Career Center
  • Berufsbildung
  • PSI Bildungszentrum

Für die Medien

  • Das PSI in Kürze
  • Zahlen und Fakten
  • Mediacorner
  • Medienmitteilungen
  • Social Media

Folgen Sie uns: Twitter (deutsch) LinkedIn Youtube Facebook Instagram Issuu RSS

Footer legal

  • Impressum
  • Nutzungsbedingungen
  • Editoren-Login