Avec son infrastructure de recherche unique au monde, le PSI offre des possibilités exceptionnelles pour la recherche de pointe nationale et internationale.
Explorez nos domaines de recherche
Scientific Highlights de nos centres
Une nouvelle couche protectrice rend les batteries plus performantes
Augmenter la densité énergétique des batteries lithium-ion: c’est possible grâce à une méthode de revêtement de la surface de la cathode. Ce procédé durable a été développé au PSI.
Décision concernant IMPACT: la mise à niveau de l’installation de recherche du PSI sera réalisée
Le financement des transformations à l’accélérateur de protons du PSI a été avalisé par le Parlement suisse.
Vers un trafic routier faiblement émetteur de dioxyde de carbone
Des scientifiques de l’Institut Paul Scherrer PSI montrent comment une intégration habile des énergies renouvelables permettrait de décarboniser le trafic routier.
Vous souhaitez utiliser nos installations pour votre recherche?
Découvrez nos grands installations de recherche et autres infrastructures de recherche.
Les centres du PSI en un coup d'œil
Nos centres de recherche et de services mènent de la recherche de pointe reconnue au niveau international dans les sciences naturelles et les science de l’ingénierie et mettent à la disposition de la science ainsi que de l'industrie de grandes installations de recherche très complexes pour leurs propres projets de recherche.
Scientific Highlights de nos centres
YBa1−𝑥Sr𝑥CuFeO5 layered perovskites: An attempt to explore the magnetic order beyond the paramagnetic-collinear-spiral triple point
Layered perovskites of general formula AA'CuFeO5 are characterized by the presence of spiral magnetic phases whose ordering temperatures 𝑇spiral can be tuned far beyond room temperature by introducing modest amounts of Cu/Fe chemical disorder in the crystal structure. This rare property makes these materials prominent candidates to host multiferroicity and magnetoelectric coupling at temperatures suitable for applications. Moreover, it has been proposed that the highest 𝑇spiral value that can be reached in this structural family ( ∼400 K) corresponds to a paramagnetic-collinear-spiral triple point with potential to show exotic physics. Since generating high amounts of Cu/Fe disorder is experimentally difficult, the phase diagram region beyond the triple point has been barely explored. To fill this gap we investigate here eleven YBa1−𝑥Sr𝑥CuFeO5 solid solutions (0≤𝑥≤1 ), where we replace Ba with Sr with the aim of enhancing the impact of the experimentally available Cu/Fe disorder. Using a combination of bulk magnetization measurements, synchrotron x-ray and neutron powder diffraction we show that the spiral state with 𝐤𝑠=(1/2,1/2,1/2±𝑞) is destabilized beyond a critical Sr content, being replaced by a fully antiferromagnetic state with ordering temperature 𝑇coll2≥𝑇spiral and propagation vector 𝐤𝑐2=(1/2,1/2,0). Interestingly, both 𝑇spiral and 𝑇coll2 increase with 𝑥 with comparable rates. This suggests a common, disorder-driven origin for both magnetic phases, consistent with theoretical predictions.
Connection between f-electron correlations and magnetic excitations in UTe2
The detailed anisotropic dispersion of the low-temperature, low-energy magnetic excitations of the candidate spin-triplet superconductor UTe2 is revealed using inelastic neutron scattering. The magnetic excitations emerge from the Brillouin zone boundary at the high symmetry Y and T points and disperse along the crystallographic b-axis. In applied magnetic fields ...
Decentralized hydrogen-based stationary energy storage systems complemented by smart control can provide increased operational flexibility in the energy system
While the electrification of the energy system implies a reduction of greenhouse gas emissions greatly beneficial to society, it can also pose technical challenges. The most notable among these are that the capacity of the local electric grid may be exceeded, along with the occurrence of imbalances between decentralized renewable energy production and final consumption. Hydrogen-based energy storage systems (HESS) are regarded as promising solutions to address these challenges. However, the feasibility has not been demonstrated and the involved processes are not well characterized on a technical relevant power level, so far.