PSI Center for Neutron and Muon Sciences

The PSI Center for Neutron and Muon Sciences uses neutrons and muons to explore and understand matter and materials.

Morano et al

Absence of Altermagnetic Magnon Band Splitting in MnF2

Altermagnets are collinear compensated magnets in which the magnetic sublattices are related by rotation rather than translation or inversion. One of the quintessential properties of altermagnets is the presence of split chiral magnon modes. Recently, such modes have been predicted in MnF2

Here, we report inelastic neutron scattering results ...

Khasanov et al

Pressure effect on the spin density wave transition in La2PrNi2O6.96

High-pressure studies reveal a stark contrast between the superconducting properties of double-layer Ruddlesden-Popper (RP) nickelates La2⁢PrNi2⁢O7 and La3⁢Ni2⁢O7. While La2⁢PrNi2⁢O7 exhibits bulk superconductivity, La3⁢Ni2⁢O7 displays filamentary behavior, suggesting that superconductivity is confined to phase interfaces rather than the bulk. Since magnetism emerges ...

Sakrikar et al (2)

Pressure tuning of competing interactions on a honeycomb lattice

Exchange interactions are mediated via orbital overlaps across chemical bonds. Thus, modifying the bond angles by physical pressure or strain can tune the relative strength of competing interactions. Here we present a remarkable case of such tuning between the Heisenberg (J) and Kitaev (K) exchange, which respectively establish magnetically ordered and spin liquid phases on a honeycomb lattice. We observe ...

Graham et al

Tailoring the Normal and Superconducting State Properties of Ternary Scandium Tellurides, Sc6MTe2 (M = Fe, Ru, and Ir) Through Chemical Substitution

The pursuit of a unifying theory for non-BCS superconductivity has faced significant challenges. One approach to overcome such challenges is to perform systematic investigations into superconductors containing d-electron metals in order to elucidate their underlying mechanisms. Recently, the Sc6MTe2 (M = d-electron metal) family has emerged as a unique series of isostructural compounds exhibiting superconductivity across a range of 3d, 4d, and 5d electron systems. 

In this study, muon spin rotation, neutron diffraction, and magnetization techniques are employed to probe ...

Wang et al

Achieving Uniform Phase Structure for Layer-by-Layer Processed Binary Organic Solar Cells with 20.2% Efficiency

Layer-by-layer (LBL) deposition has become a facile and promising method to fabricate highly efficient organic solar cells (OSCs). However, characterization and optimization of 3D morphology remain a grand challenge for LBL- processed active layers, and their correlation with photovoltaic properties of OSC devices is not clear to date. 

Here, to address this issue, ...

Marc Janoschek

Prof. Dr. Marc Janoschek appointed new Head of the PSI Center for Neutron and Muon Sciences (CNM)

Prof. Dr. Marc Janoschek will take over as Head of the PSI Center for Neutron and Muon Sciences (CNM) on 1 June 2025.

300

The CNM center hosts 300 members of staff, in addition 40 PhD students perform their thesis work within CNM

5+1

The center is organized in 5 laboratories and 1 staff group.

3/30

CNM operates 3 of the 5 large scale user facilities: the Swiss spallation neutron source SINQ, the Swiss Muon Source SμS and the facilities for particle physics CHIRSP with approximately 30 experimental stations open for users.

1700

The facilities in the CNM center are open to international access — with approximately 1700 annual user visits the associated user program is a key activity for the center and for PSI as a whole.

Postal address
Paul Scherrer Institut
Center for Neutron and Muon Sciences CNM

WHGA/345
5232 Villigen PSI
Switzerland