Direkt zum Inhalt
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Suche
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIÖffnen dieses Hauptmenu Punktes
    • Research Initiatives
    • Research Integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsÖffnen dieses Hauptmenu Punktes
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Large Research Facilities
  • Facilities and InstrumentsÖffnen dieses Hauptmenu Punktes
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesÖffnen dieses Hauptmenu Punktes
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

Sie befinden sich hier:

  1. PSI Home
  2. Labs & User Services
  3. PSD
  4. LMN
  5. Research Groups
  6. Quantum Technologies

Sekundäre Navigation

Laboratory for Micro and Nanotechnology

  • About LMN
    • Organisational Structure
  • Open Positions
  • People
  • Research Groups Ausgeklappter Submenü Punkt
    • Nanotechnology
    • X-ray Optics and Applications
      • X-ray Optics for Imaging and Spectroscopy
        • Fresnel Zone Plate for X-ray Microscopy
        • Blazed X-ray Optics
        • Zernike X-ray Phase Contrast Microscopy
        • Fresnel Zone Plates for RIXS
        • Refractive Lenses by 2 Photon 3D Lithography
      • Wavefront Metrology and Manipulation
        • Vortex Fresnel Zone Plates
        • Grating-based Wavefront Metrology
      • X-ray Optics for XFELs
        • Diamond Fresnel Zone Plates
        • Beam Splitter Gratings for Spectral Monitoring
        • A Delay Line for Ultrafast Pump-Probe Experiments
        • X-ray Streaking for Ultrafast Processes
    • Polymer Nanotechnology
      • Nanoimprint Lithography
      • Three Dimensional Structures
    • Molecular Nanoscience
      • On-surface Chemistry
      • Spins in Molecular Monolayers
      • SiC: Surfaces and Interfaces
      • Our Research Team
    • Advanced Lithography and Metrology
      • EUV Interference Lithography
      • EUV Lensless Imaging
      • ALM Nanoscience
    • Quantum Technologies Ausgeklappter Submenü Punkt
      • News and highlights
      • People
      • Open positions
      • Current projects
        • 2D semiconductor devices
        • CDW-based memory devices
        • Imaging quantum many-body states
        • Nonlinear magnonics
        • Rare-earth quantum magnets
        • Strained Germanium laser
      • Techniques
        • Cristallina-Q
        • IR beamline
        • Nano-fabrication
      • Publications
      • QTC@PSI
  • Facilities and Equipment
    • Cleanroom Labs
    • Surface Science Lab
    • Scanning Electron Microscopy
    • Scanning Probe Microscopy
    • PEARL Beamline
    • XIL Facility at the SLS
    • Nanoimprint Facilities
    • Electron Beam Lithography
  • LMN News
  • LMN Highlights
    • Archive
  • Publications
    • Publications 2011 - 2016

Info message

Dieser Inhalt ist nicht auf Deutsch verfügbar.
Quo Vadis 2019

Quantum TechnologiesFundamentals and concepts for novel quantum devices

One of the main driving forces for top-down nanofabrication is to design the light-matter interaction in metamaterials and to improve the optical and transport properties of materials by applying quantum effects, but also by controlling external constraints such as spatial dimension and strain. Spectroscopy and scattering techniques are our main tools to investigate the respective 'modified' structures, which provide the bases for improving the performance of electronic and opto-electronic devices.

Our scientific agenda derives from the synthesis of our knowledge of “old” materials, such as silicon, germanium, as well as correlated electron systems, and new concepts from the quantum information science and technology.

The QT group employs PSI’s large-scale facilities to study many-body phenomena in quantum matter and to engineer novel nanostructured devices. Our activities nucleate at the infrared (IR) beamline of the Swiss Light Source (SLS) synchrotron, the clean room of the Laboratory for Micro and Nanotechnology,  where we set the ground for ultrafast x-ray spectroscopy and scattering experiments in high magnetic fields and low temperatures at the SwissFEL x-ray free-electron laser.


Current Projects

adrian_project
Weiterlesen

 

Rare-earth quantum magnets

Spin waves.
Weiterlesen

 

Nonlinear magnonics

 

2D semiconductor device
Weiterlesen

 

2D semiconductor devices

 

Ge laser
Weiterlesen

 

Strained Germanium laser

 

SLAC_CoherentLockIn_FeSe
Greg Stewart/SLAC National Accelerator Laboratory
Weiterlesen

 

Imaging quantum many-body physics

CDW_Mem
Weiterlesen

 

CDW-based memory devices

Device image bosonic codes
Weiterlesen

 

Bosonic quantum error correction with superconducting circuits


Open positions

In addition to advertised positions, we always welcome applications from highly motivated and skilled candidates.


News and highlights

24. August 2020
Cat Qubit 2

Scientists develop a new kind of qubit based on the concept of Schrödinger’s cat

Scientists in the Applied Physics department of Yale University – one of the leading authors, Alexander Grimm, has in the meantime relocated to PSI – have developed a new device that combines the Schrödinger’s cat concept of superposition (a physical system existing in two states at once) with the ability to fix some of the trickiest errors in a quantum computation.

Weiterlesen
12. August 2020
adrian_fig3

Efficient analysis method for multiplet lines in Fourier space

In his first paper as lead author, LMN PhD student Adrian Beckert and co-authors demonstrate an algorithm which takes advantage of peak multiplicity to retrieve line shape information. The results were published in Optics Express and are relevant to a wide range of topics, ranging from neutron-scattering to spectroscopy of rare-earth doped solids.

Weiterlesen
1. Juli 2019
LaserImage

First demonstration of a Germanium laser

Scientist at the Paul Scherrer Institut and ETH Zürich, with colleagues from CEA Grenoble, have demonstrated and characterized a technology that, for the first time, yields lasing from strained elemental Germanium. This achievement underlines PSI’s leading role in the development of Silicon-compatible laser light sources.

Weiterlesen
7. Juli 2017
teaserbild.jpg

Scientists get first direct look at how electrons ‘dance’ with vibrating atoms

Scientists at the SLAC National Accelerator Laboratory and Stanford University - one of the leading authors, Simon Gerber, has in the meantime relocated to PSI - have made the first direct measurements, and by far the most precise ones, of how electrons move in sync with atomic vibrations rippling through an quantum material, in the present study an unconventional superconductor, as if they were “dancing" to the same beat.

Weiterlesen
7. Juli 2017

Research experience from California benefits Swiss X-ray free-electron laser SwissFEL

Media Releases Large Research Facilities Matter and Material SwissFEL

An X-ray free-electron laser (XFEL) is capable of visualizing extremely fast structural and electronic processes. Pilot experiments will take place at the PSI's Swiss Free-Electron Laser (SwissFEL) from the end of 2017 on. Two current publications in Science and Nature Communications demonstrate the kind of outstanding scientific work that is enabled by such facilities. The work was carried out at the Linac Coherent Light Source (LCLS) in California. Two of the leading authors behind these studies have now relocated to the PSI in order to share their expertise as SwissFEL expands its capabilities.

Weiterlesen

Mit Sidebar

Contact

Simon Gerber

Laboratory for Micro-
and Nanotechnology
Paul Scherrer Institut
5232 Villigen PSI
Switzerland

Telephone:
+41 56 310 3965
Telefax:
+41 56 310 2646
E-mail: simon.gerber@psi.ch

SwissFEL

IR Beamline at SLS

Quantum Technologies Collaboration at PSI (QTC@PSI)

A nucleation point of PSI competences towards the quantum technology initiative
top

Fussbereich

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Schweiz

Telefon: +41 56 310 21 11
Telefax: +41 56 310 21 99

Der Weg zu uns
Kontaktformular

Besucherzentrum psi forum
Schülerlabor iLab
Zentrum für Protonentherapie
PSI Bildungszentrum
PSI Guest House (in english)
PSI Gastronomie

Service & Support

  • Telefonbuch/​Personensuche
  • User Office
  • Accelerator Status
  • Publikationen des PSI
  • Lieferanten
  • E-Rechnung
  • Computing
  • Sicherheit

Karriere

  • Arbeiten am PSI
  • Stellenangebote
  • Aus- und Weiterbildung
  • Berufsbildung
  • PSI Bildungszentrum

Für die Medien

  • Das PSI in Kürze
  • Zahlen und Fakten
  • Medienkontakt
  • Medienmitteilungen
  • Social Media Newsroom

Folgen Sie uns: Twitter (deutsch) LinkedIn Youtube Issuu RSS

Footer legal

  • Impressum
  • Nutzungsbedingungen
  • Editoren-Login