
TOMCAT - X02DA: Tomographic Microscopy
A beamline for TOmographic Microscopy and Coherent rAdiology experimenTs
The beamline for TOmographic Microscopy and Coherent rAdiology experimentTs (TOMCAT) [1] is operated by the X-ray Tomography Group and offers cutting-edge technology and scientific expertise for exploiting the distinctive peculiarities of synchrotron radiation for fast, non-destructive, high resolution, quantitative investigations on a large variety of samples. Absorption-based and phase contrast imaging are routinely performed with isotropic voxel sizes ranging from 0.16 to 11 μm (fields-of-view (h x v) of 0.4 x 0.3 mm2 and 22 x 3-7 mm2, respectively) in an energy range of 8-45 keV. Phase contrast is obtained with simple edge-enhancement, propagation-based techniques [2, 3] or through grating interferometry [4].
Typical acquisition times are on the order of seconds to a few minutes. However, dynamic processes can be followed in 4D (3D space + time) using the ultra-fast endstation, which provides sub-second temporal resolution [5] for extended time periods thanks to the in-house developed GigaFRoST system [6]. A laser-based heating system [7] and a cryojet and cryo-chamber are available as standard installations and are compatible with both the standard and ultra-fast endstations. It is also possible to bring specialized, user-defined instrumentation to TOMCAT. Please contact beamline staff in advance to discuss this option.
A temporal resolution of a few (< 5) minutes can also be achieved with the hard X-ray full-field microscope setup [8] delivering a pixel size of 65 nm for microscopic samples (~75x75 μm2 field-of-view).
3D tomographic datasets are reconstructed from 2D projections using highly optimized software [9, 10] based on Fourier methods and a user-friendly interface (i.e., an ImageJ plug-in). Remote access to a flexible HPC facility is available for subsequent advanced post-processing and data quantification. A suite of analytical and iterative reconstruction routines is provided, additional ad-hoc tools can be easily installed by the single user.
Energy range | 8-45 keV |
---|---|
Highest 3D spatial resolution | ca. 1 μm in parallel beam geometry ca. 200 nm in full-field geometry |
Max. temporal resolution | 20 Hz |
Available techniques | - Absorption-based tomographic microscopy - Propagation-based phase contrast tomographic microscopy - Ultra-fast tomographic microscopy - Grating interferometry - Absorption and phase contrast nanotomography |
Available devices for in situ sample conditioning | - Laser-based heating system - Cryojet and cryo-chamber |
Scientific Highlights
X-ray imaging after heart transplantations
Synchrotron light can be used in follow-up after a heart transplant to determine whether the body may be rejecting the new organ.
X-ray tomography helps understand how the heart beats
Researchers at the Swiss Light Source SLS use X-ray phase contrast imaging to study a heart in action as it beats.
Weird fossil is not our ancestor
X-ray light solves puzzle of human ancestry
Direct observation of crack formation mechanisms with operando Laser Powder Bed Fusion X-ray radiography
Operando high-speed X-ray radiography experiments reveal the cracking mechanism during 3D laser printing of a Ni superalloy.
News
Jisoo Kim receives PSI Thesis Medal 2023
Jisoo Kim receives the PSI Thesis Medal 2023. With this award, PSI recognises outstanding PhD theses, achieving a high degree of innovation and potentially leading to scientific breakthroughs. Jisoo holds a Master of Science from the Korean Advanced Institute of Science &Technology and defended his thesis entitled “Towards time-resolved X-ray scattering tensor tomography” at ETH Zürich.
Jisoo Kim bags the 2022 Werner Meyer-Ilse Award
Jisoo Kim was awarded the 2022 Werner Meyer-Ilse Memorial Award. The WMI Award is given to young scientists for exceptional contributions to the advancement of X-ray microscopy through either outstanding technical developments or applications, as evidenced by their presentation at the International Conference on X-ray Microscopy and supporting publications. Jisoo was awarded for his development of the method "Time-resolved x-ray scattering tomography for rheological studies", and is co-recipient of the award with Yanqi Luo from the Advanced Photons Source for her work on applications. The award was presented during the 15th International Conference on X-ray Microscopy XRM2022 hosted by the National Synchrotron Radiation Research Center (NSRRC) in Hsinchu, Taiwan on 19 - 24 June, 2022.
TOMCAT welcomes on board two scientists
The X-ray Tomography group welcomes on board Mariana Verezhak and Goran Lovric as members of the TOMCAT beamline crew. They will both contribute to the further development and realization of TOMCAT 2.0 (S- and I-TOMCAT branches on SLS2.0).
SLS 2.0 approved - TOMCAT 2.0 cleared for takeoff!
In December 2020 the Swiss parliament approved the Swiss Dispatch on Promotion of Education, Research and Innovation (ERI) for 2021 to 2024 which includes funding for the planned SLS 2.0 upgrade. The new machine will lead to significantly increased brightness, thus providing a firm basis for keeping the SLS and its beamlines state-of-the-art for the decades to come. The TOMCAT crew is very excited that the TOMCAT 2.0 plans (deployment of the S- and I-TOMCAT branches, see SLS 2.0 CDR, p. 353ff) have been included in the Phase-I beamline upgrade portfolio. These beamlines will receive first light right after the commissioning of the SLS 2.0 machine around mid 2025. A first milestone towards this goal has just been achieved, with the successful installation of the S-TOMCAT optics hutch during W1 of 2021. The TOMCAT scientific and technical staff would like to thank Mr. Nolte and his Innospec crew for delivering perfectly on schedule.
BEATS beamline scientist from SESAME synchrotron trains at TOMCAT
TOMCAT welcomes Gianluca Iori, beamline scientist from BEATS - the new beamline for tomography at the SESAME synchrotron in Jordan, to a 3-month training on beamline operations. Gianluca’s visit is part of the Staff Training (BEATS Work Package 2) organized for BEATS scientific staff and SESAME control engineers. BEATS is a European project, funded under the EU’s Horizon 2020 research and innovation programme and coordinated by the ESRF.
3 new Post Docs and 1 PhD student join TOMCAT
The X-ray Tomography group welcomes Stefan Gstöhl (Post-Doc), Maxim Polikarpov (Post-Doc), Margaux Schmeltz (Post-Doc) and Aleksandra Ivanovic (PhD Student) as new members. The group also thank everybody who helped making it possible for our Post-Docs and PhD student to join PSI amidst the challenges brought by the COVID-19 pandemic.
Automatic extraction of dynamic features from sub-second tomographic microscopy data
A fully automatized iterative reconstruction pipeline designed to reconstruct and segment dynamic processes within a static matrix has been developed at TOMCAT. The algorithm performance is demonstrated on dynamic fuel cell data where it enabled automatic extraction of liquid water dynamics from sub-second tomographic microscopy data. The work is published in Scientific Reports on 2 October 2020.
4 times compression factor for tomographic data feasible
In a recent study, TOMCAT has shown that lossy compression by a factor of at least 3 to 4 of raw acquisitions generally does not affect the reconstruction quality and that higher factors (six to eight times) can be achieved for tomographic volumes with a high signal-to-noise ratio as it is the case for phase-retrieved datasets. This finding is relevant to current challenges on large tomography data management and storage especially at synchrotron facilities. The results of this study was published in Journal of Synchrotron Radiation.
References
- M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, A. Bertrand, S. Henein, R. Betemps, U. Frommherz, P. Bohler, D. Meister, M. Lange, and R. Abela, "Trends in synchrotron-based tomographic imaging: the SLS experience", Developments in X-Ray Tomography V, Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie), 6318, U199-U212 (2006). DOI: 10.1117/12.679497
- A. Groso, R. Abela, and M. Stampanoni, "Implementation of a fast method for high resolution phase contrast tomography", Optics Express, 14, 8103-8110 (2006). DOI: 10.1364/OE.14.008103
- D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, "Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object", Journal of Microscopy, 206, 33-40 (2002). DOI: 10.1046/j.1365-2818.2002.01010.x
- S. A. McDonald, F. Marone, C. Hintermüller, G. Mikuljan, C. David, F. Pfeiffer, and M. Stampanoni, "Advanced phase-contrast imaging using a grating interferometer", J. Synchrotron Rad., 16, 562-572 (2009). DOI: 10.1107/S0909049509017920
- R. Mokso, F. Marone, D. Haberthur, J. C. Schittny, G. Mikuljan, A. Isenegger, and M. Stampanoni, "Following Dynamic Processes by X-ray Tomographic Microscopy with Sub-second Temporal Resolution", 10th International Conference on X-Ray Microscopy, 1365, 38-41 (2011). DOI: 10.1063/1.3625299
- R. Mokso, C. M. Schlepütz, G. Theidel, H. Billich, E. Schmid, T. Celcer, et al., "GigaFRoST: The Gigabit Fast Readout System for Tomography", J. Synchrotron Rad., 24 (6), 1250-1259 (2017). DOI: 10.1107/S1600577517013522
- J. L. Fife, M. Rappaz, M. Pistone, T. Celcer, G. Mikuljan, and M. Stampanoni, "Development of a laser-based heating system for in-situ synchrotron-based x-ray tomographic microscopy", J. Synchrotron Rad., 19, 352 (2012). DOI: 10.1107/S0909049512003287
- M. Stampanoni, R. Mokso, F. Marone, J. Vila-Comamala, S. Gorelick, P. Trtik, et al., "Phase-contrast tomography at the nanoscale using hard x-rays", Physical Review B, 81, 140105R (2010). DOI: 10.1103/PhysRevB.81.140105
- F. Marone, and M. Stampanoni, "Regridding reconstruction algorithm for real time tomographic imaging", J. Synchrotron Rad., 19, 1029-1037 (2012). DOI: 10.1107/S0909049512032864
- F. Marone, A. Studer, H. Billich, L. Sala, and M. Stampanoni, "Towards on-the-fly data post-processing for real-time tomographic imaging at TOMCAT", Advanced Structural and Chemical Imaging, 3, 1 (2017). DOI: 10.1186/s40679-016-0035-9