Skip to main content
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Suche
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIOpen mainmenu item
    • Research Initiatives
    • Research Integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsOpen mainmenu item
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Large Research Facilities
  • Facilities and InstrumentsOpen mainmenu item
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesOpen mainmenu item
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

You are here:

  1. PSI Home
  2. Labs & User Services
  3. PSD
  4. LSC
  5. PEM
  6. Scientific Highlights & News

Secondary navigation

Photons for Engineering and Manufacturing

  • People
    • Alumni
  • Research Overview
    • In situ mechanical testing
      • X-ray Powder Diffraction
      • X-ray Laue Diffraction
      • Neutron Powder Diffraction
    • In situ cooling
    • High resolution digital image correlation
    • Molecular dynamics
    • Crystal plasticity
  • Projects
    • ERC MULTIAX
    • 18ct Gold Alloys
    • Additive Manufacturing
    • Micro-crystals
    • Nanostructured Materials
    • Al Alloys
    • SFAAM
  • Infrastructure
    • Selective laser melting
    • Micro Tensile Machine
    • Tension/Compression Module
    • Minibiaxial Tensile Machine
    • Mesobiaxial Tensile Machine
    • Micro Shear Device
    • Micro Compression Device
  • Teaching and Education
  • Publications
  • Scientific Highlights and News

Scientific Highlights

Toggle filters
Datum
25 May 2020
3D printed Matterhorn

A miniaturized selective laser melting device for operando X-ray diffraction studies

We report on the development of a miniaturized device for operando X-ray diffraction during laser 3D printing. Its capabilities are demonstrated by ex situ printing of complex shapes and operando X-ray diffraction experiments using Ti-6Al-4V powder. 

 

Read more
21 May 2020
TEM matrix distortion

Influence of thermo-mechanical history on the ordering kinetics in 18 carat Au alloys

In situ high-energy synchrotron X-ray diffraction experiments in combination with electron microscopy observations reveal the influence of the thermo-mechanical history and chemical composition on the ordering kinetics during isochronal heating of 18 karat Au alloys.

Read more
11 May 2020
Cover Materials Today

Operando X-ray diffraction during laser 3D printing

Ultra-fast operando X-ray diffraction experiments reveal the temporal evolution of low and high temperature phases and the formation of residual stresses during laser 3D printing of a Ti-6Al-4V alloy. The profound influence of the length of the laser-scanning vector  on the evolving microstructure is revealed and elucidated.  

Read more
10 October 2019
HRDIC

Characterisation of work hardening and springback in Ti

Interrupted standard tensile tests with in situ x-ray diffraction and quasi-in situ electron backscatter diffraction reveal the origin behind the work hardening plateau and springback.

Read more
12 April 2019
Helena van Swygenhoven

Prof. Helena Van Swygenhoven presented the plenary Kavli lecture at the MRS spring meeting 2019

Plenary Session Featuring The Fred Kavli Distinguished Lectureship in Materials Science:

Tuesday, April 23
8:15 am – 9:30 am
PCC North, 100 Level, Ballroom 120 D

Read more
11 January 2019

Revealing the role of microstructure architecture on strength and ductility of Ni microwires by in-situ synchrotron X-ray diffraction

The effect of diameter reduction on the mechanical properties of cold-drawn nickel microwires has been analyzed by a combination of in situ X-ray diffraction and electron backscatter diffraction observations.

Read more
26 November 2018

A High Resolution Digital Image Correlation Study under Multiaxial Loading

We have developed a new cruciform geometry with reduced thickness at the center, which allows reaching high plastic strain under equibiaxial loading. The novel thinning method results in excellent surface quality, suitable for electron backscatter diffraction (EBSD) and high-resolution digital image correlation (HRDIC) investigations. We performed an in-situ HRDIC study on a 304 austenitic stainless steel using the new cruciform geometry to follow the slip activity under uniaxial and equibiaxial loadings.

Read more
20 November 2018

In situ tension-tension strain path changes of cold-rolled Mg AZ31B

The mechanical behavior of cold-rolled Mg AZ31B is studied during in-plane multiaxial loading and tension-tension strain path changes using in situ neutron diffraction and electron backscatter diffracion.

Read more
22 May 2018
MultiScaleModeling.jpg

Mechanical response of stainless steel subjected to biaxial load path changes: cruciform experiments and multi-scale modeling

In this work, we have enhanced our originally proposed experiment-modeling synergy in Upadhyay et al. Acta Mat. 2016, to capture the stress evolution in the complex cruciform geometry during arbitrary multi-axial load path changes. We perform cruciform simulations using the implementation of the visco-plastic self-consistent (VPSC) model as a user material (UMAT) into the ABAQUS finite element (FE) solver. We also use the Elasto-viscoplastic fast Fourier transform (EVP-FFT) approach to compute yield surfaces. This experiment-modeling synergy is exploited to understand the mechanical response (including the elastic response, Bauschinger effect and hardening) of 316L stainless steel following biaxial load path changes.

Read more
  • 1
  • 2
  • Next page ››
  • Last page Last »

Sidebar

EPFL.png

Contact

PEM
Paul Scherrer Institut
CH-5232 Villigen-PSI
Switzerland

Prof. Helena Van Swygenhoven
Group Leader

Telephone:
+41 56 310 2931
E-mail:
helena.vs@psi.ch

SINQ Facility

Information about the Neutron Source.


LSC Homepage

Laboratory for Condensed Matter Physics



Photon Science Division

Homepage of PSI Division Photon Science (PSD)
 


Scientific Highlights PSD

Scientific Highlights of PSI Division Photon Science (PSD)

Swiss Light Source SLS

Synchrotron light large research facility.

User Office

The PSI User Office is a central PSI installation to serve the users from all the four user laboratories.


Current openings PSD

Job Opportunities at Research Division Photon Science


Directions to PSI

How to get to the Paul Scherrer Institute (description and map)

top

Footer

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Switzerland

Telephone: +41 56 310 21 11
Telefax: +41 56 310 21 99

How to find us
Contact form

Visitor Centre psi forum
School Lab iLab (in German)
Center for Proton Therapy
PSI Education Centre
PSI Guest House
PSI Gastronomie (in German)

 

Service & Support

  • Phone Book/People Search
  • User Office
  • Accelerator Status
  • PSI Publications
  • Suppliers
  • E-Billing
  • Computing
  • Safety (in German)

Career

  • Working at PSI
  • Job Opportunities
  • Training and further education
  • Vocational Training (in German)
  • PSI Education Center

For the media

  • PSI in brief
  • Facts and Figures
  • Media Contact
  • Media Releases
  • Social Media Newsroom

Follow us: Twitter (in English) LinkedIn Youtube Issuu RSS

Footer legal

  • Imprint
  • Terms and Conditions
  • Editors' login