Skip to main content
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Search
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIOpen mainmenu item
    • Research Initiatives
    • Ethics and Research integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsOpen mainmenu item
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Scientific Computing, Theory and Data
    • Large Research Facilities
  • Facilities and InstrumentsOpen mainmenu item
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesOpen mainmenu item
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • New ProjectsOpen mainmenu item
    • SLS 2.0
    • IMPACT
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

You are here:

  1. PSI Home
  2. Labs & User Services
  3. PSD
  4. LSC
  5. PEM
  6. Scientific Highlights and News
  7. Operando X-ray diffraction during laser 3D printing

Secondary navigation

Photons for Engineering and Manufacturing

  • People
    • Alumni
  • Research Overview
    • In situ mechanical testing
      • X-ray Powder Diffraction
      • X-ray Laue Diffraction
      • Neutron Powder Diffraction
    • In situ cooling
    • High resolution digital image correlation
    • Molecular dynamics
    • Crystal plasticity
  • Projects
    • ERC MULTIAX
    • 18ct Gold Alloys
    • Additive Manufacturing
    • Micro-crystals
    • Nanostructured Materials
    • Al Alloys
    • SFAAM
  • Infrastructure
    • Selective laser melting
    • Micro Tensile Machine
    • Tension/Compression Module
    • Minibiaxial Tensile Machine
    • Mesobiaxial Tensile Machine
    • Micro Shear Device
    • Micro Compression Device
  • Teaching and Education
  • Publications
  • Scientific Highlights and News
11 May 2020

Operando X-ray diffraction during laser 3D printing

Cover Materials Today

Additive manufacturing, a bottom-up approach for manufacturing components layer by layer from a 3D computer model, plays a key role in the so-called “fourth” industrial revolution. Selective laser melting (SLM), one of the more mature additive manufacturing processes, uses a high power-density laser  to  selectively melt and fuse powders  spread layer by layer. The method enables to build near full density functional parts and has viable economic benefits. Despite significant progress in recent years, the relationship between the many processing parameters and final microstructure is not well understood, which strongly limits the number of alloys that can be produced by SLM for commercial applications. 

To tackle this problem, we have built a miniaturized SLM device that allows printing full 3D structures while performing ultra-fast time-resolved X-ray diffraction experiments. This new operando technique was applied during printing of Ti-6Al-4V. The experiments allowed tracking the evolution of the high temperature β-phase and the low temperature α-phase during cooling down from the melt with a temporal resolution of 0.05ms.Cooling rates up to 700’000°C/s were measured and the built-up of residual stresses could be followed. The measurements show that the length of the laser-scanning vector has a profound influence on the temperature evolution and the cooling rates experienced in the printed volume and therefore on the β -> α phase transformation, which determines the final microstructure. These new insights provide invaluable input and validation opportunities for the advanced numerical modelling techniques under development.

Contact

Helena Van Swygenhoven
Photons for Engineering and Manufacturing Group
Paul Scherrer Institut, Villigen, Switzerland
Telephone: +41 56 310 2931
E-mail: helena.vanswygenhoven@psi.ch

Original Publication

Operando X-ray diffraction during laser 3D printing
Samy Hocine, Helena Van Swygenhoven, Steven Van Petegem, Cynthia Sin Ting Chang, Tuerdi Maimaitiyili, Gemma Tinti, Dario Ferreira Sanchez, Daniel Grolimund, Nicola Casati
Materials Today 2019
DOI: 10.1016/j.mattod.2019.10.001

Basic principle of operando X-ray diffraction during selective laser melting.

Sidebar

EPFL.png

Contact

PEM
Paul Scherrer Institut
CH-5232 Villigen-PSI
Switzerland

Prof. Helena Van Swygenhoven
Group Leader

Telephone:
+41 56 310 2931
E-mail:
helena.vs@psi.ch

SINQ Facility

Information about the Neutron Source.


LSC Homepage

Laboratory for Condensed Matter Physics


Photon Science Division

Homepage of PSI Division Photon Science (PSD)


Scientific Highlights PSD

Scientific Highlights of PSI Division Photon Science (PSD)

Swiss Light Source SLS

Synchrotron light large research facility.

SwissFEL

The new X-ray free electron laser facility.


User Office

The PSI User Office is a central PSI installation to serve the users from all the four user laboratories.


Current openings PSD

Job Opportunities at Research Division Photon Science


Directions to PSI

How to get to the Paul Scherrer Institute (description and map)

top

Footer

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Switzerland

Telephone: +41 56 310 21 11
Telefax: +41 56 310 21 99

How to find us
Contact

Visitor Centre psi forum
School Lab iLab (in German)
Center for Proton Therapy
PSI Education Centre
PSI Guest House
PSI Gastronomie (in German)
psi forum shop

Service & Support

  • Phone Book
  • User Office
  • Accelerator Status
  • PSI Publications
  • Suppliers
  • E-Billing
  • Computing
  • Safety (in German)

Career

  • Working at PSI
  • Job Opportunities
  • Training and further education
  • Career Center
  • Vocational Training (in German)
  • PSI Education Center

For the media

  • PSI in brief
  • Facts and Figures
  • Media corner
  • Media Releases
  • Social Media

Follow us: Twitter (in English) LinkedIn Youtube Facebook Instagram Issuu RSS

Footer legal

  • Imprint
  • Terms and Conditions
  • Editors' login