Skip to main content
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Suche
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIOpen mainmenu item
    • Research Initiatives
    • Research Integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsOpen mainmenu item
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Large Research Facilities
  • Facilities and InstrumentsOpen mainmenu item
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesOpen mainmenu item
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

You are here:

  1. PSI Home
  2. Labs & User Services
  3. PSD
  4. LSC
  5. PEM
  6. Scientific Highlights and News
  7. Revealing the role of microstructure architecture on strength and ductility of Ni microwires by in-situ synchrotron X-ray diffraction

Secondary navigation

Photons for Engineering and Manufacturing

  • People
    • Alumni
  • Research Overview
    • In situ mechanical testing
      • X-ray Powder Diffraction
      • X-ray Laue Diffraction
      • Neutron Powder Diffraction
    • In situ cooling
    • High resolution digital image correlation
    • Molecular dynamics
    • Crystal plasticity
  • Projects
    • ERC MULTIAX
    • 18ct Gold Alloys
    • Additive Manufacturing
    • Micro-crystals
    • Nanostructured Materials
    • Al Alloys
    • SFAAM
  • Infrastructure
    • Selective laser melting
    • Micro Tensile Machine
    • Tension/Compression Module
    • Minibiaxial Tensile Machine
    • Mesobiaxial Tensile Machine
    • Micro Shear Device
    • Micro Compression Device
  • Teaching and Education
  • Publications
  • Scientific Highlights and News
11 January 2019

Revealing the role of microstructure architecture on strength and ductility of Ni microwires by in-situ synchrotron X-ray diffraction

Evolution of peak broadening for the {111} and {200} grain families during multiple load-unload cycles, performed on a 0.1mm Ni single crystal microwire.
Evolution of peak broadening for the {111} and {200} grain families during multiple load-unload cycles, performed on a 0.1mm Ni single crystal microwire.

The objective of this work is to understand strengthening and reduction of ductility in nickel microwires with reduction in diameter via high-energy synchrotron X-ray diffraction (XRD). Tensile tests on Ni microwires are performed in combination with XRD to derive the deformation mechanisms taking place in the different grain families. These mechanisms are discussed in view of the initially observed microstructure (grain size and crystallographic micro-texture) and the effect of diameter change by electropolishing. From these results, guidelines are proposed to tailor the strength and ductility of Ni microwires, these considerations being general enough to be extended to other FCC metals.

Contact
Steven Van Petegem
Photons for Engineering and Manufacturing Group
Paul Scherrer Institut, Villigen, Switzerland
Telephone: +41 56 310 2537
E-mail: steven.vanpetegem@psi.ch


Ludovic Thilly
Institut Pprime
Université de Poitiers, Futuroscope, France
E-mail: ludovic.thilly@univ-poitiers.fr
Original Publication
Revealing the role of microstructure architecture on strength and ductility of Ni microwires by in-situ synchrotron X-ray diffraction
Ravi raj purohit Purushottam raj purohit, Abhinav Arya, Girish Bojjawar, Maxime Pelerin, Steven Van Petegem, Henry Proudhon, Soham Mukherjee, Céline Gerard, Loïc Signor, Cristian Mocuta, Nicola Casati, Satyam Suwas, Atul H. Chokshi, Ludovic Thilly,
Scientific Reports 9, 79 (2019)
DOI: https://doi.org/10.1038/s41598-018-36472-3

Sidebar

EPFL.png

Contact

PEM
Paul Scherrer Institut
CH-5232 Villigen-PSI
Switzerland

Prof. Helena Van Swygenhoven
Group Leader

Telephone:
+41 56 310 2931
E-mail:
helena.vs@psi.ch

SINQ Facility

Information about the Neutron Source.


LSC Homepage

Laboratory for Condensed Matter Physics



Photon Science Division

Homepage of PSI Division Photon Science (PSD)
 


Scientific Highlights PSD

Scientific Highlights of PSI Division Photon Science (PSD)

Swiss Light Source SLS

Synchrotron light large research facility.

User Office

The PSI User Office is a central PSI installation to serve the users from all the four user laboratories.


Current openings PSD

Job Opportunities at Research Division Photon Science


Directions to PSI

How to get to the Paul Scherrer Institute (description and map)

top

Footer

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Switzerland

Telephone: +41 56 310 21 11
Telefax: +41 56 310 21 99

How to find us
Contact

Visitor Centre psi forum
School Lab iLab (in German)
Center for Proton Therapy
PSI Education Centre
PSI Guest House
PSI Gastronomie (in German)

 

Service & Support

  • Phone Book
  • User Office
  • Accelerator Status
  • PSI Publications
  • Suppliers
  • E-Billing
  • Computing
  • Safety (in German)

Career

  • Working at PSI
  • Job Opportunities
  • Training and further education
  • Vocational Training (in German)
  • PSI Education Center

For the media

  • PSI in brief
  • Facts and Figures
  • Media corner
  • Media Releases
  • Social Media Newsroom

Follow us: Twitter (in English) LinkedIn Youtube Issuu RSS

Footer legal

  • Imprint
  • Terms and Conditions
  • Editors' login