Bloc-notes, crayon et algorithmes
Dominik Sidler, physicien au PSI, développe des théories fondamentales pour des phénomènes restés inexpliqués à ce jour.
Subvention prestigieuse pour la recherche au PSI
Béton, catalyse chimique et quête d’une nouvelle physique: trois chercheurs du PSI ont reçu chacun un grant du Fonds national pour ces thèmes de recherche
Déchiffrer l’énigme des protéines
Cette année, le prix Nobel de chimie est attribué à trois chercheurs qui ont contribué de manière déterminante à déchiffrer le code des protéines, ces importants éléments constitutifs de la vie. Mais pour que des applications puissent être développées à partir de ces connaissances, par exemple dans le domaine médical, des centres de recherche comme le PSI sont indispensables.
Un élément «magique» remet en question le modèle de la synthèse nucléaire dans les étoiles
Des mesures surprenantes mènent sur la piste d’un processus inconnu.
Précision unique: nouvelle valeur pour la demi-vie du samarium-146
Des scientifiques du PSI et de l’Université nationale australienne ont déterminé la demi-vie du samarium 146 avec une très grande précision.
Nature’s sunscreen and other SwissFEL stories
From DNA repair to catalysts: how the Alvra experimental station at SwissFEL has developed into a special tool for biology and chemistry research.
Une bionanomachine pour la chimie verte
Des scientifiques du PSI ont caractérisé une enzyme bactérienne unique en son genre, qui permet une importante réaction chimique.
Charge fractionalisation observed spectroscopically
Quantum mechanics tells us that the fundamental unit of charge is unbreakable – but exceptions exist.
Altermagnetism proves its place on the magnetic family tree
Experiments at the Swiss Light Source SLS prove the existence of a new type of magnetism, with broad implications for technology and research.
Réparer de l’ADN endommagé avec la lumière du soleil
Les dommages infligés à l’ADN sont une cause du vieillissement, de la mort cellulaire et même du cancer. La capacité à réparer de l’ADN endommagé revêt donc une importance cruciale pour tous les organismes. Au SwissFEL du PSI, une équipe internationale de recherche vient d’étudier la manière dont la photolyase, une enzyme, utilise l’énergie de la lumière du soleil pour ce mécanisme de réparation.
The secret life of an electromagnon
SwissFEL sheds light on how lattice and atomic spins jiggle together.
A gold standard for computational materials science codes
The most comprehensive verification effort so far on computer codes for materials simulations.
Plongée dans le cytosquelette
Le cytosquelette est un petit prodige. Son exploration promet, entre autres, de nouvelles possibilités de traitement contre le cancer.
Décrypter les secrets du cerveau
Centre de recherche de pointe: des chercheurs du PSI reçoivent un subside de pointe des NIH américains pour mener des recherches sur le cerveau.
L’énigme des microgels a été élucidée
Des chercheurs du PSI et de l’Université de Barcelone ont réussi à expliquer de manière expérimentale l’étrange rétraction des microgels.
Hairy cells: How cilia’s motor works
Understanding this motion may help to tackle health problems that affect cilia, which range from fertility issues to lung disease and COVID-19.
Mirror, mirror on the wall…
…. Now we know there are chiral phonons for sure
Un algorithme pour des films de protéines plus nets
Un algorithme qui vient d’être développé permet d’analyser plus efficacement les mesures faites aux lasers à rayons X à électrons libres.
La chasse au rayon du proton
0,000 000 000 000 000 840 87 (39) mètre: c’est le nombre étonnant que des chercheuses et des chercheurs au PSI ont découvert pour le rayon d’un proton.
Ainsi débute la vision
Des chercheurs du PSI ont analysé ce qui se passait tout au début dans l’œil quand la lumière atteint la rétine.
Financement de 2 millions pour la quête d’une nouvelle physique
Philipp Schmidt-Wellenburg mettra sur pied une expérience inédite à une ligne de faisceau de muons du PSI.
How to get chloride ions into the cell
A molecular movie shot at PSI reveals the mechanism of a light-driven chloride pump
Mieux comprendre le sens de la vue
Des chercheurs du PSI ont mis en lumière la structure d’un élément important dans l’œil: le canal ionique CNG qui permet au signal visuel d’être transmis au cerveau.
L’Infrastructure suisse pour la physique des particules CHRISP
Les chercheurs recherchent les écarts par rapport au modèle standard actuel de la physique et veulent savoir comment notre univers est construit.
La taille du noyau d’hélium a été mesurée avec une précision inégalée
Dans le cadre d’expériences conduites à l’Institut Paul Scherrer PSI, une collaboration internationale de recherche a mesuré le rayon du noyau de l’atome d’hélium de manière cinq fois plus précise que tous les chercheurs avant elle. Ce nouveau résultat permet de tester certaines théories fondamentales en physique.
Isolé du monde par blindage magnétique
A l’Institut Paul Scherrer PSI, des chercheurs ont construit une chambre magnétiquement isolée du reste du monde dont les performances sont uniques au niveau planétaire. Leur objectif est de résoudre l’une des dernières énigmes sur l’origine de la matière et de répondre à la question fondamentale: pourquoi la matière, et par conséquent l’homme, existent-ils au sein de l’univers?
Déformation inattendue d’une protéine
Des chercheurs du PSI ont découvert un secret du cytochrome c, que cette protéine vitale avait bien gardé jusque-là. Des mesures au laser à rayons X à électrons libres SwissFEL ont mis en évidence des modifications structurelles que la science avait pourtant exclues pour ce type de biomolécules.
A la recherche d’une nouvelle physique
L’accélérateur de protons à haute intensité HIPA permet à l’Institut Paul Scherrer PSI de produire des particules élémentaires pour élucider la structure de notre univers. Les chercheurs utilisent des pions, des muons et des neutrons pour vérifier la validité du modèle standard de la physique des particules.
De l’hélium pionique avec une longue durée de vie: première preuve expérimentale de l’existence d’une matière exotique
Les atomes exotiques, où des électrons ont été remplacés par d’autres particules, permettent de scruter en profondeur l’univers quantique. Au terme de huit ans de travail, une équipe internationale de chercheurs a réussi une expérience difficile à la source de pions du PSI: créer un atome artificiel appelé «hélium pionique».
Sur la piste de l’énigme de la matière
A la source de neutrons ultra-froids du PSI, des chercheurs ont mesuré une propriété du neutron avec une précision inégalée à ce jour: son moment dipolaire électrique. Aujourd’hui encore, on cherche en effet à comprendre pourquoi il est apparu plus de matière que d’antimatière après le Big Bang.
Des ciseaux moléculaires stabilisent le cytosquelette de la cellule
Des chercheurs de l’Institut Paul Scherrer PSI ont identifié une importante partie du cycle qui régule le montage et le démontage du cytosquelette en observant des ciseaux moléculaires au travail à l’aide de la Source de Lumière Suisse SLS.
Bio toute, cette fois: le SwissFEL permet de visualiser des structures de protéines
Pour pouvoir développer de nouveaux principes actifs médicamenteux, il est décisif d’avoir une connaissance précise des protéines. Lors d’une expérience pilote, des chercheurs ont utilisé pour la première fois le laser à rayons X à électrons libres SwissFEL pour étudier des cristaux de protéines.
Un matériau produit au PSI permet de mettre à l'épreuve certaines irrégularités de la théorie du Big Bang
Le Big Bang a été immédiatement suivi de l'apparition d'atomes de type béryllium 7. Dans tout l'univers, la plupart de ces atomes se sont désintégrés depuis belle lurette. Un échantillon de béryllium 7, produit artificiellement au PSI, vient d'aider les chercheurs à mieux comprendre les premières minutes de l'univers.
Le travailleur de force du val Mesolcina
Aldo Antognini a la physique et la convivialité dans le sang. Aldo Antognini, chercheur au PSI, a reçu plus de 2 200 000 francs de l’UE pour sa nouvelle expérience. Son objectif: déterminer la répartition du magnétisme dans le proton. Pour y arriver, ce physicien des particules devra mettre ses talents scientifiques et techniques à contribution, mais aussi son entregent.
Surprendre les protéines en pleine action
Les protéines sont des composants indispensables à la vie. Elles jouent un rôle décisif dans de nombreux processus biologiques. Des chercheurs ont maintenant réussi à montrer comment étudier les processus ultrarapides au cours desquels les protéines effectuent leur travail, en utilisant un laser à rayons X à électrons libres comme le SwissFEL à l’Institut Paul Scherrer PSI. Les lasers à rayons X à électrons libres produisent des impulsions extrêmement brèves et intenses de lumière de type rayons X. Dans le monde, seules deux installations de ce type sont actuellement en service. Les résultats ont été publiés aujourd’hui dans la revue scientifique Nature Communications.
Expérience dans une goutte en lévitation
La structure exacte des protéines est normalement déterminée au PSI par la technique de diffraction des rayons X. Deux scientifiques du PSI viennent de l’améliorer de façon astucieuse: au lieu d’immobiliser les protéines, ils les ont étudiées dans une goutte de liquide en lévitation.
500 000 fois moins probable que de gagner au loto
La rareté d’une désintégration de particules a été mesuréeDans le cadre de l’expérience MEG, des chercheurs du PSI sont à la recherche d’une voie de désintégration extrêmement rare de certaines particules élémentaires appelées muons. Pour être plus précis, ils chiffrent cette improbabilité. Leur tout dernier résultat: cette désintégration se produit dans moins d’un cas sur 2,4 milliards. Ce résultat permet aux physiciens théoriciens de trier, parmi les hypothèses visant à décrire l’univers, celles qui résistent à la confrontation avec la réalité.
Mesurer la simultanéité
Que fait un physicien lorsque son expérience nécessite un chronométrage d’une extrême précision? D’une précision telle que l’électronique existante n’est pratiquement d’aucun secours? Un chercheur de l’Institut Paul Scherrer PSI a décidé sans autre forme de procès de développer lui-même une solution: sa puce électronique de haute précision, baptisée DRS4, pourrait bien permettre de déchiffrer les lois physiques qui gouvernent notre univers tout entier. Incidemment, elle permet aujourd’hui déjà aux médecins de localiser des tumeurs cérébrales de manière extrêmement précise.
Une nouvelle méthode va permettre de mesurer les neutrons avec une précision inédite
Notre univers est composé de nettement plus de matière que ce que les théories actuelles permettent d’expliquer. Ce fait représente l’une des grandes énigmes de la science moderne. Une manière de clarifier cette dissension passe par ce qu’on appelle le moment dipolaire électrique du neutron. Dans le cadre d’une coopération internationale, des chercheurs du PSI ont développé une nouvelle méthode pour aider à déterminer plus précisément ce moment dipolaire.
Révélation de nouveaux détails sur la transmission des stimuli chez les êtres vivants
Une nouvelle étude révèle des détails inédits sur la manière dont les cellules des êtres vivants traitent les stimuli. Les protéines G sont au centre de ce processus : elles contribuent à transmettre vers l'intérieur de la cellule les stimuli qui atteignent cette dernière depuis l'extérieur. Cette étude est la première à dévoiler quelle est la partie des protéines G qui s'avère déterminante pour leur fonctionnement. Tels sont les résultats que rapportent des chercheurs de l'Institut Paul Scherrer (PSI), de l'EPF Zurich, de l'entreprises pharmaceutique Roche et du MRC Laboratory of Molecular Biology (Angleterre) dans la dernière édition du magazine spécialisé Nature Structural and Molecular Biology.
L’union fait la force
Décrypter les molécules au SwissFEL et à la SLSLes protéines sont un objet de recherche convoité, mais récalcitrant. Leur étude est aujourd’hui facilitée par une nouvelle méthode développée à l’aide d’un laser à rayons X à électrons libres comme le futur SwissFEL du PSI. Elle consiste à exposer à intervalles rapprochés de petits échantillons identiques de protéines à de la lumière de type rayons X. On contourne ainsi un problème majeur auquel la recherche sur les protéines s’est heurtée jusqu’ici: produire des échantillons de taille suffisante.
L'accélérateur de protons du PSI : 40 ans de recherche de pointe
Teaser: Recherche sur les matériaux, physique des particules, biologie moléculaire, archéologie : depuis 40 ans, le grand accélérateur de protons de l’Institut Paul Scherrer (PSI) rend possible de la recherche de pointe dans différents domaines.
Des cas rares de désintégration de particules appuient le modèle standard
A partir de données mesurées au détecteur CMS au CERN, des chercheurs de l’Institut Paul Scherrer ont observé pour la première fois, avec une certitude suffisante, le cas rare de la désintégration du méson Bs en deux muons. Ils ont également déterminé sa fréquence. Leurs résultats coïncident avec les prédictions du modèle standard de la physique des particules.
Une désintégration décisive
Un processus extrêmement rare devrait déterminer quelle sera, à l’avenir, la théorie la plus adéquate pour décrire notre univers. Ce processus, c’est une désintégration bien particulière d’un type de particule élémentaire : les muons. Ces particules ne vivent guère longtemps et se désintègrent en d’autres particules différentes. Alors qu’un modèle théorique interdit pratiquement un processus bien particulier de désintégration des muons, un autre modèle théorique l’autorise. Quelle théorie est la bonne ? Des physiciens de l’Institut Paul Scherrer ont fait un pas en avant dans cette énigme, grâce à l’observation extrêmement précise de plusieurs centaines de milliards de désintégrations. Ils ont publié leurs résultats dans la revue spécialisée « Physical Review Letters ».
PSI inside
« La découverte du boson de Higgs » a été relayée dans tous les médias début juillet 2012. Aux yeux de Roland Horisberger, physicien des particules au PSI, cette annonce était prématurée : « Il faudra certainement compter encore cinq ans avant que l’on puisse affirmer avec certitude que le boson de Higgs a bel et bien été découvert, souligne-t-il. Quelle que soit l’issue de cette quête à qu’il s’agisse du boson de Higgs, ou d’une particule « semblable au boson de Higgs », telle qu’elle est décrite dans certaines théories à les résultats pourront être estampillés en grandes lettres « PSI inside ».
Plongée au cœur de la centrale de commande de la communication cellulaire
Dans notre organisme, de nombreux processus tels que la vue, l’odorat ou le goût, sont exécutés par une importante famille de détecteurs : situés à la surface des cellules, ces derniers sont appelés récepteurs couplés aux protéines G (RCPG). Des chercheurs ont à présent comparé les structures spatiales connues à ce jour de RCPG, et découvert un réseau stabilisateur de fines contrefiches, qui caractérise l’architecture de l’ensemble de la famille des RCPG. La connaissance de ces particularités structurelles, conservées au fil de l’évolution, est susceptible de revêtir une utilité considérable pour le développement de nouveaux médicaments.
Une nouvelle énigme du proton
Une équipe de recherche internationale a confirmé, par des mesures de spectroscopie laser sur l’hydrogène exotique, que la taille du proton était bien plus petite que prévue. L’expérience a eu lieu à l'institut Paul Scherrer (PSI). Le PSI est à présent le seul centre de recherche au monde à produire un nombre suffisant de muons pour fabriquer des atomes d’hydrogène exotiques à partir de protons et de muons et d'effectuer de telles recherches.
Le côté faible du proton
Une équipe de recherche internationale a déterminé avec une grande précision la participation du proton à l’interaction faible (une des quatre forces fondamentales de la nature). Les résultats confirment les prédictions théoriques du modèle standard de la physique des particules. Lors de l'expérience, il a été mesuré la probabilité de capture des muons par des protons. Ce processus est gouverné par l’interaction faible. L'expérience a été réalisée à l'Institut Paul Scherrer PSI, le seul endroit au monde produisant suffisamment de muons pour permettre une expérience sur une durée raisonnable.