Experiments in the clouds – how soot influences the climate
PSI-researcher Martin Gysel receives prestigious European funding (ERC Consolidator Grant) for his studies on the role of soot in cloud formation and global warming.
Promises of cyclotron-produced 44Sc as a diagnostic match for trivalent beta - emitters: In vitro and in vivo study of a 44Sc-DOTA-folate conjugate
Research Division Biology and Chemistry (BIO), Folate Receptor Targeting Group, Head Cristina Müller. In recent years, implementation of 68Ga-radiometalated peptides for PET imaging of cancer has attracted the attention of clinicians. Herein, we propose the use of 44Sc (half-life = 3.97 h, average β+ energy [Eβ+av] = 632 keV) as a valuable alternative to 68Ga (half-life = 68 min, Eβ+av = 830 keV) for imaging and dosimetry before 177Lu-based radionuclide therapy.
L’Institut Paul Scherrer dirige deux des pôles de compétence de la Confédération dans le domaine de l’énergie
Dans le cadre de la Stratégie énergétique 2050, la Confédération et le Parlement ont décidé de renforcer l’encouragement de la recherche énergétique en Suisse. Dans ce cadre, il est prévu de mettre sur pied sept pôles de compétence travaillant en réseau : les Swiss Competence Centers in Energy Research (pôles de compétence interuniversitaire en recherche énergétique ou SCCER). Des institutions du Domaine des EPF, des universités et des hautes écoles spécialisées (HES) devraient s’allier, au sein des SCCER, avec des partenaires industriels. Objectifs : constituer de nouvelles compétences, et mettre au point des solutions novatrices dans certains champs d’action décisifs pour le tournant énergétique. Dans deux SCCER à dévolus au stockage de l’énergie et à la biomasse à qui ont déjà obtenu leur adjudication, l’Institut Paul Scherrer (PSI) est l’institution responsable. Ils se mettront au travail dès 2014.
Des cas rares de désintégration de particules appuient le modèle standard
A partir de données mesurées au détecteur CMS au CERN, des chercheurs de l’Institut Paul Scherrer ont observé pour la première fois, avec une certitude suffisante, le cas rare de la désintégration du méson Bs en deux muons. Ils ont également déterminé sa fréquence. Leurs résultats coïncident avec les prédictions du modèle standard de la physique des particules.
Un aperçu de l’approvisionnement énergétique mondial à venir
En 2050, comment le monde s’approvisionnera-t-il en énergie, et quelles seront les conséquences sociales, économiques et écologiques de différents objectifs de développement et de différentes conditions-cadre politiques ? Ces questions, les chercheurs de l’Institut Paul Scherrer (PSI) y répondent en collaboration avec le Conseil Mondial de l’Énergie CME, en analysant deux scénarios : un premier qui mise principalement sur l’économie de marché, et un second principalement sur la régulation. Ces analyses sont aujourd’hui terminées, et leurs résultats seront présentés du 13 au 17 octobre, au Congrès mondial de l’Energie du CME, qui se tiendra à Daegu, en Corée du Sud.
De la vitamine pour lutter contre le cancer
Cristina Müller, membre du Centre des Sciences Radiopharmaceutiques, consacre sa recherche à un traitement, basé sur des liaisons d’acide folique marquées radioactivement. Ces liaisons pénètrent sans entrave dans la cellule, comme un cheval de Troie, avant de la tuer avec leurs radiations, explique-t-elle.
Formation de particules dans l'atmosphère: l'expérience CLOUD au CERN déchiffre un nouveau composant du processus
Les gouttelettes qui forment les nuages se constituent à partir de minuscules particules, qui planent dans l’atmosphère. On ignore encore beaucoup de choses sur la manière dont ces dernières se forment. Récemment, et pour la première fois, on a réussi à déchiffrer la formation de particules à partir d’amines et d’acide sulfurique. Une avancée majeure pour la recherche en sciences atmosphériques.
La sécurité – une culture à développer
Sabine Mayer dirige depuis le début de cette année la Division Radioprotection et Sécurité (ASI) de l’Institut Paul Scherrer (PSI). Cette physicienne est responsable de la coordination de l’ensemble de la sécurité au PSI, du corps des sapeurs-pompiers de l’institut à la surveillance radiologique, en passant par la sécurité au travail. Mais l’importance de sa division s’étend au-delà du PSI : les autorités suisses font souvent appel à ses experts, qui participent ainsi également au développement de la culture de la sécurité en Suisse.
Simulations informatiques : un pilier essentiel de la sécurité des centrales nucléaires
Sans simulations informatiques, l’exploitation de centrales nucléaires serait pratiquement impossible. Qu’il s’agisse d’intégrer de nouveaux composants, ou de mener des tests et des essais visant à assurer la sécurité : presque tout doit être calculé et analysé par ordinateur au préalable. Au Laboratoire de physique des réacteurs et des comportements des systèmes, on développe à cet effet des modèles de calcul et des programmes informatiques. Les chercheurs du PSI officient dans ce cadre en tant que partenaires de recherche indépendants de l’IFSN (Inspection fédérale de sécurité nucléaire), et fournissent ainsi une contribution importante pour assurer la sécurité des centrales nucléaires suisses.
Des billes pour moins de déchets nucléaires
L’idée de produire du combustible nucléaire sous forme de sphères (et non de pastilles, comme c’est l’usage aujourd’hui) remonte aux années 1960. Les avantages suivants en étaient escomptés : une simplification de la fabrication du combustible ainsi qu’une nette réduction de la quantité de déchets radioactifs lors de sa fabrication et de son utilisation en centrale nucléaire. Ce type de combustible n'a toutefois jamais été utilisé parce que les types de réacteurs pour lesquels il avait été envisagé n’ont pas pu s'imposer. Dans le passé, l’Institut Paul Scherrer (PSI) a aussi contribué à la recherche en matière de combustible à particules sphériques. A nouveau, plusieurs projets, en partie financés par l’Union européenne, sont actuellement en cours au PSI. Leur objectif : continuer à améliorer la production des billes de combustible. Cette forme de combustible pourrait être utilisée soit dans des installations spéciales de réduction des quantités de déchets radioactifs, soit dans des réacteurs rapides de quatrième génération, qui, en cycle fermé, produisent eux aussi moins de déchets à vie longue.
Reconstitution de l’accident nucléaire de Fukushima
Des chercheurs de l’Institut Paul Scherrer (PSI) participent à un projet international, dont l’objectif est de reconstruire les différents évènements qui se sont produits à l’intérieur du réacteur de la centrale nucléaire de Fukushima Daiichi, lors de l’accident nucléaire de mars 2011. La reconstitution de l’état final des curs des réacteurs devrait aider l’exploitant de la centrale TEPCO (Tokyo Electricity Company) à préparer les travaux de décontamination dans l’enveloppe protectrice du réacteur. L’exercice pourrait par ailleurs servir à affiner les programmes informatiques de simulation des accidents nucléaires.
Cinq fois moins de platine : grâce à un nouveau catalyseur aérogel, les piles à combustible pourraient devenir économiquement attrayantes
Les piles à combustible produisent de l’électricité à partir d’hydrogène et n’émettent que de l’eau, elles sont une alternative écologique pour la mobilité individuelle du futur. Depuis plus de 10 années, l’Institut Paul Scherrer (PSI) étudie et développe des piles à combustibles basse température à membrane polymère. Les premiers tests pratiques ont montré que ces piles à combustible peuvent être utilisées avec succès pour des voitures et des bus. Mais d’autres recherches restent nécessaires pour améliorer la longévité de cette technologie et la rendre économiquement viable. Une équipe internationale de chercheurs, à laquelle participe le PSI, a fabriqué un nanomatériau potentiellement capable d’améliorer la performance et la durabilité de ces piles à combustible à tout en réduisant les coûts.
Pancreas: new procedure detects tumours more efficiently
Better than CT and MRI: researchers at the Inselspital Berne, the University Hospital Basel and the Paul Scherrer Institute have devised a new method to detect small tumours in the pancreas.
Diffusion des radionucléides: les enseignements pour un dépôt en couches géologiques profondes
Comment les substances radioactives évoluent-elles dans la roche d’accueil d’un dépôt en couches géologiques profondes pour déchets nucléaires ? A l’Institut Paul Scherrer (PSI), des chercheurs du groupe de recherche Processus de diffusion se penchent sur cette question au Laboratoire Sûreté des dépôts de déchets radioactifs. On connaît bien les propriétés de transport des radionucléides chargés négativement : ils sont repoussés par les surfaces des minéraux argileux, chargées négativement elles aussi, et n’adhèrent donc pour ainsi pas à la roche. Un projet de l’Union européenne est en train de mettre en évidence des éléments de connaissance concernant les radionucléides chargés positivement, qui eux, adhèrent fortement à la roche. Le PSI y participe.
Simultanément ferromagnétique et antiferromagnétique
Des chercheurs de l’Institut Paul Scherrer (PSI) ont fabriqué dans un matériau, le LuMnO3 de fines couches cristallines, à la fois ferromagnétiques et antiferromagnétiques. A la limite immédiate de l’interface vers le cristal de support, la couche de LuMnO3 est ferromagnétique ; mais plus on s’en éloigne, plus l’ordre antiferromagnétique (normalement caractéristique de ce matériau) augmente, et plus le ferromagnétisme faiblit. La possibilité de produire deux ordres magnétiques au sein du même matériau pourrait avoir des retombées importantes pour la technologie.
Les connaissances pour demain en provenance des « cellules chaudes »
Des mesures de sécurité strictes encadrent la manipulation et l’analyse d’objets irradiés, et donc radioactifs, provenant de centrales nucléaires ou de laboratoires de recherche. Ces tests ne peuvent être conduits que dans des enceintes baptisées « cellules chaudes », dont les parois de béton et de plomb de plusieurs mètres d’épaisseur. Dans les cellules chaudes du Laboratoire chaud du PSI, des barreaux de combustibles usés provenant des centrales nucléaires suisses sont régulièrement soumis à une analyse scientifique des matériaux. Les connaissances obtenues dans le cadre de ces analyses permettent aux exploitants d’optimiser l’efficacité et la sécurité de leurs centrales. A côté de ces prestations de service destinées aux centrales nucléaires, le Laboratoire chaud est également impliqué dans des projets de recherche internationaux.
Des neutrons rapides pour plus de sécurité
Les neutrons sont un instrument remarquable pour reproduire visuellement l’intérieur des objets sans les détruire. Ils représentent un complément à la radiographie aux rayons X, à laquelle on recourt le plus souvent.Toutefois, la radiographie neutronique reste cantonnée, la plupart du temps, aux laboratoires ou à certains sites de recherche fixes, car la production de neutrons nécessite des machines complexes, coûteuses et intransportables.Des chercheurs de l’Institut Paul Scherrer (PSI) cherchent à corriger la donne, avec une technique d’imagerie plus flexible basée sur des neutrons rapides.
MEGAPIE samples delivered to partners for post irradiation investigation
The MEGAWatt Pilot Experiment was operated for neutron generation with the PSI high intensity proton beam in 2006. The experiment utilized liquid target material, a lead bismuth eutectic. This marked a major milestone towards Accelerator Driven Systems (ADS), which are intended to be used for the incineration of nuclear waste.
Incinération des déchets : la panacée, vraiment ?
Autrefois, les déchets ménagers finissaient tous, sans exception, dans des décharges, et ce sans avoir subi le moindre traitement en amont. Conséquence de cette pratique : le site de la décharge finissait souvent par devenir une « zone écologiquement morte ». L’incinération municipale des déchets a quelque peu désamorcé le problème : c’est en effet uniquement grâce à elle et au recyclage, que la surface occupée par les décharges a pu être contenue au cours des dernières décennies, en dépit de l’augmentation globale des quantités de déchets. Toutefois, l’incinération des déchets est loin d’être la panacée. Certains produits de l’incinération, soit ceux qui étaient déjà presents dans les produits incinérés ou ceux qui provient de l’incinéreation elle-même et qui sont dommageables pour la santé et l’environnement, finissent en effet dans des décharges, en dépit de leur passage par les usines d’incinération.
Experiments in millionths of a second
Muons à unstable elementary particles à provide scientists with important insights into the structure of matter. They provide information about processes in modern materials, about the properties of elementary particles and the nature of our physical world. Many muon experiments are only possible at the Paul Scherrer Institute because of the unique intense muon beams available here.
Scénarios pour la transformation du système électrique en Suisse
Des chercheurs de l’Institut Paul Scherrer (PSI) ont analysé l’évolution du secteur suisse de l’électricité au travers de différents scénarios, en se servant de leur modèle STEM-E. Leur conclusion : toutes les alternatives à l’approvisionnement actuel en électricité devraient entraîner une augmentation des coûts des systèmes. Il se pourrait, par ailleurs, que des concessions doivent être faites au niveau de certains objectifs relevant du développement durable, comme la protection du climat et l’indépendance de la Suisse par rapport à l’étranger en matière d’approvisionnement en énergie. L’analyse indique que d’ici 2050, les coûts de production d’électricité augmenteront probablement d’au moins 50 pour cent.