Aller au contenu principal
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Rechercher
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Notre rechercheOuvrir ce point de menu principal
    • Actualités de notre recherche
    • Technologies d’avenir
    • Energie et climat
    • Innovation santé
    • Fondements de la nature
    • Grands instruments de recherche
    • Brochures
    • 5232 — Le magazine de l'Institut Paul Scherrer
    • Research Divisions & Labs (only english)
  • IndustrieOuvrir ce point de menu principal
    • Aperçu
    • Le transfert de technologie
    • Compétences
    • Entreprises spin-off
    • Park Innovaare
  • Protonthérapie Ouvrir ce point de menu principal
    • Aperçu
    • Information aux médecins et aux patients
  • CarrièreOuvrir ce point de menu principal
    • Aperçu
    • Offres d'emploi
    • Travailler au PSI
    • Politique du personnel
    • Equal Opportunities, Diversity & Inclusion
    • Formation initiale et formation continue
    • Formation professionnelle
    • Centre de Formation du PSI
    • Career Center
    • Programme de soutien "PSI Career Return Program"
    • PSI-FELLOW/COFUND
  • Visite au PSIOuvrir ce point de menu principal
    • Aperçu
    • Centre de visiteurs psi forum
    • Schülerlabor iLab
    • Manifestations
    • Comment nous trouver
  • Sur le PSIOuvrir ce point de menu principal
    • Le PSI en bref
    • Stratégie
    • Chartes
    • Chiffres et faits
    • Organisation
    • Pour les médias
    • Fournisseurs
    • Clients – e-facture
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

Vous êtes ici:

  1. PSI Home
  2. Notre recherche
  3. Actualités recherche
  4. Comment les catalyseurs vieillissent

Navigation secondaire

Notre recherche

  • Actualités recherche Sous-menu élargi
    • Technologies d’avenir
    • Energie et climat
    • Innovation santé
    • Fondements de la nature
    • Plateforme ESI
    • Grands instruments de recherche
    • Projet SLS 2.0
    • Aperçu de sujets
    • Archives
  • 5232 — Le magazine de l'Institut Paul Scherrer
    • Contact/Rédaction
  • Brochures
  • Films
    • Tour virtuel
  • Social Media
    • PSI-Netiquette
  • Pour les médias
    • Communiqués de presse
9 juin 2021

Comment les catalyseurs vieillissent

Communiqués de presse Recherche avec la lumière synchrotron Recherche sur les matériaux Technologies d’avenir Collaboration avec l’industrie

Des chercheurs du PSI ont développé une nouvelle méthode de tomographie qui leur a permis de mesurer en 3D les propriétés chimiques à l’intérieur de matériaux catalytiques, de manière extrêmement précise et beaucoup plus rapidement qu’avec les techniques employées jusqu’ici. L’application est tout aussi importante pour la recherche que pour l’industrie. Les chercheurs publient aujourd’hui leurs résultats dans la revue spécialisée Science Advances.

Zirui Gao, chercheur au PSI, a développé un nouvel algorithme pour des analyses expérimentales. Il raccourcit nettement la durée de certaines mesures, qui sinon seraient trop fastidieuses.
Zirui Gao, chercheur au PSI, a développé un nouvel algorithme pour des analyses expérimentales. Il raccourcit nettement la durée de certaines mesures, qui sinon seraient trop fastidieuses. Les chercheurs l’ont utilisé pour analyser le vieillissement à l’échelle nanométrique d’un matériau catalytique très utilisé.
(Photo: Institut Paul Scherrer/Markus Fischer)
Mirko Holler, Zirui Gao, Johannes Ihli et Manuel Guizar-Sicairos (de gauche à droite), chercheurs au PSI, avec à l’arrière-plan la Source de Lumière Suisse SLS où les mesures ont été conduites.
Mirko Holler, Zirui Gao, Johannes Ihli et Manuel Guizar-Sicairos (de gauche à droite), chercheurs au PSI, avec à l’arrière-plan la Source de Lumière Suisse SLS où les mesures ont été conduites.
(Photo: Institut Paul Scherrer/Markus Fischer)

Le groupe de matériaux des oxydes de vanadium et de phosphore (VPO) est largement utilisé comme catalyseur dans l’industrie chimique. Dans les années 1970 déjà, on recourait à des VPO pour fabriquer de l’anhydride maléique; l’anhydride maléique sert de matière première pour la fabrication de certains types de plastiques, notamment les plastiques biodégradables. Dans l’industrie, les matériaux catalytiques sont utilisés pendant plusieurs années, car bien qu’ils jouent un rôle important pour le déroulement des réactions chimiques, ils ne sont pas consommés pendant ce processus. Néanmoins, du fait de cette utilisation, les catalyseurs VPO se modifient avec le temps.

Des chercheurs de deux unités de l’Institut Paul Scherrer PSI – la division de recherche Sciences photoniques et la division de recherche Energie et environnement – ont analysé précisément le vieillissement des VPO, en collaboration avec l’ETH Zurich et l’entreprise Clariant AG. Dans la foulée, ils ont aussi développé une nouvelle méthode expérimentale.

Deux méthodes…

La société Clariant AG est leader mondial dans le domaine de la chimie de spécialités. Elle a mis deux échantillons à disposition du PSI: un échantillon de VPO qui n’avait encore jamais été utilisé et un échantillon qui avait été employé pendant quatre ans comme catalyseur en exploitation industrielle. On sait depuis longtemps qu’au fil des années d’utilisation, le VPO se modifie et perd quelque peu de ses propriétés catalytiques. Mais on ignorait jusqu’ici quels étaient les processus responsables de ce phénomène au niveau de la nanostructure et des atomes.

Les chercheurs ont examiné cette question à l’aide de méthodes ultramodernes de caractérisation des matériaux. Pour visualiser la structure chimique des échantillons à l’échelle nanométrique, ils ont combiné deux procédés: premièrement une méthode de tomographie développée auparavant au PSI, appelée tomographie par rayons X ptychographique, qui utilise les rayons X de la Source de Lumière Suisse SLS et permet de visualiser l’intérieur de l’échantillon sans l’endommager avec une résolution de l’ordre du nanomètre. Deuxièmement, les chercheurs ont utilisé une méthode locale de spectroscopie de transmission, qui a mis en évidence les propriétés chimiques du matériau dans chaque élément de volume des tomographies.

«En fait, nous avons recueilli des données quadridimensionnelles, explique Johannes Ihli, chercheur au PSI et co-auteur de l’étude. Nous avons reconstruit une représentation en 3D à haute résolution de notre échantillon, où chaque élément de volume – appelé voxel – a une longueur d’arête de 26 nanomètres seulement. Par ailleurs, pour chaque voxel, nous disposons d’un spectre quantitatif de la transmission des rayons X, dont l’analyse nous révèle précisément la chimie locale.»

A partir de ces spectres, les chercheurs ont déterminé certaines grandeurs chimiques fondamentales pour chaque voxel: la densité électronique, la concentration de vanadium et le degré d’oxydation du vanadium. Comme les catalyseurs VPO étudiés étaient ce qu’on appelle du matériau hétérogène, ces grandeurs changent aux différentes échelles sur tout le volume de l’échantillon, déterminant ou limitant à leur tour la performance du matériau catalytique.

… et un nouvel algorithme

La procédure pour obtenir ces données a consisté d’abord à mesurer l’échantillon pour obtenir une image projetée en 2D, puis à faire très légèrement pivoter cette dernière avant de la mesurer à nouveau, et ainsi de suite. Cette procédure a été répétée à différentes énergies. La méthode utilisée jusque-là aurait nécessité quelque 50 000 images 2D, qui auraient été assemblées pour former une centaine de tomographies. Tout cela aurait représenté environ une semaine de pur temps de mesure pour chacun des deux échantillons.

«Les stations expérimentales à la SLS sont très demandées et occupées pratiquement toute l’année, rappelle Manuel Guizar-Sicairos, lui aussi chercheur au PSI et directeur de cette étude. Nous ne pouvions pas nous permettre de conduire des mesures qui durent aussi longtemps.» Il fallait donc améliorer l’efficacité du recueil de données.

C’est ce que Zirui Gao, principal auteur de l’étude, a réussi à accomplir sous la forme d’un nouveau principe d’extraction des données et d’un algorithme de reconstruction associé. «La reconstruction en 3D d’un objet nécessite l’acquisition d’images 2D à différents angles, explique le chercheur. Mais notre algorithme est capable d’extraire une quantité d’information suffisante, même quand on multiplie par dix la distance entre les angles. Autrement dit, même si l’on ne prend qu’un dixième des images en 2D.» De cette manière, les chercheurs n’ont eu besoin que d’environ deux jours de mesure pour recueillir les données nécessaires. Ils ont gagné beaucoup de temps et économisé des coûts.

Pores dilatés et atomes manquants

Les mesures des deux échantillons ont montré que le VPO neuf présentait, comme on s’y attendait, un grand nombre de pores serrés, régulièrement répartis dans le matériau. Ces pores sont importants, car ce sont eux qui mettent à disposition la surface au niveau de laquelle la catalyse peut se produire. Dans le VPO qui a été utilisé pendant quatre ans, en revanche, la structure à l’échelle nanométrique est modifiée; les pores sont dilatés et moins nombreux. Le matériau entre ces derniers présente des formes cristallines plus grandes et allongées.

Au niveau moléculaire également, des changements sont intervenus: avec le temps, des espaces vides, aussi appelés trous, sont apparus dans le réseau atomique. Jusqu’ici, on n’avait fait que soupçonner leur existence. Avec les nouvelles connaissances sur la chimie de ces échantillons à l’échelle nanométrique, les chercheurs ont réussi à confirmer l’existence de ces trous et à déterminer leur position exacte: ils apparaissent à la place de certains atomes de vanadium qui manquent désormais. «On savait déjà auparavant que la teneur relative en vanadium diminuait avec le temps, explique Zirui Gao. Mais nous avons été les premiers à mettre en évidence les endroits où ces atomes manquent dans le réseau cristallin. Nos résultats confirment l’hypothèse avancée jusque-là: à savoir que les espaces vides dans le réseau atomique peuvent servir de sites actifs supplémentaires pour le processus de catalyse.»

Cela signifie que l’augmentation du nombre d’espaces vides a un effet bénéfique: ces derniers améliorent l’activité catalytique, freinant ainsi en partie la perte d’activité due à la diminution du nombre de pores. «Nos nouveaux résultats détaillés pourrait aider les entreprises de l’industrie à optimiser leurs catalyseurs et à allonger leur durée de vie», conclut Zirui Gao.

Texte: Institut Paul Scherrer/Laura Hennemann


À propos du PSI

L'Institut Paul Scherrer PSI développe, construit et exploite des grandes installations de recherche complexes et les met à la disposition de la communauté scientifique nationale et internationale. Les domaines de recherche de l'institut sont centrés sur la matière et les matériaux, l'énergie et l'environnement ainsi que la santé humaine. La formation des générations futures est un souci central du PSI. Pour cette raison, environ un quart de nos collaborateurs sont des postdocs, des doctorants ou des apprentis. Au total, le PSI emploie 2100 personnes, étant ainsi le plus grand institut de recherche de Suisse. Le budget annuel est d'environ CHF 400 millions. Le PSI fait partie du domaine des EPF, les autres membres étant l'ETH Zurich, l'EPF Lausanne, l'Eawag (Institut de Recherche de l'Eau), l'Empa (Laboratoire fédéral d'essai des matériaux et de recherche) et le WSL (Institut fédéral de recherches sur la forêt, la neige et le paysage). (Mise à jour: mai 2020)

Contact

Zirui Gao
Groupe de recherche Diffusion cohérente des rayons X
Institut Paul Scherrer, Forschungsstrasse 111, 5232 Villigen PSI, Suisse
Téléphone: +41 56 310 29 10, e-mail: zirui.gao@psi.ch [anglais, chinois]

Dr Manuel Guizar-Sicairos
Groupe de recherche Diffusion cohérente des rayons X
Institut Paul Scherrer, Forschungsstrasse 111, 5232 Villigen PSI, Suisse
Téléphone: +41 56 310 34 09, e-mail: manuel.guizar-sicairos@psi.ch [espagnol, anglais]

Dr Johannes Ihli
Groupe de recherche Diffusion cohérente des rayons X
Institut Paul Scherrer, Forschungsstrasse 111, 5232 Villigen PSI, Suisse
Téléphone: +41 56 310 40 50, e-mail: johannes.ihli@psi.ch [allemand, anglais]

Dr Mirko Holler
Laboratoire de macromolécules et bio-imagerie
Institut Paul Scherrer, Forschungsstrasse 111, 5232 Villigen PSI, Suisse
Téléphone: +41 56 310 36 13, e-mail: mirko.holler@psi.ch [allemand, anglais]

Publication originale

Sparse ab initio X-ray transmission spectro-tomography for nanoscopic compositional analysis of functional materials
Z. Gao, M. Odstrcil, S. Böcklein, D. Palagin, M. Holler, D. Ferreira Sanchez, F. Krumeich, A. Menzel, M. Stampanoni, G. Mestl, J.A. van Bokhoven, M. Guizar-Sicairos, J. Ihli

Science Advances 9 juin 2021 (en ligne)
DOI: 10.1126/sciadv.abf6971

Informations supplémentaires

Des nanomondes en 3D
Texte du 11 mars 2020

Droit à l'utilisation

Le PSI fournit gratuitement des images et/ou du matériel vidéo pour la couverture médiatique du contenu du texte ci-dessus. L'utilisation de ce matériel à d'autres fins n'est pas autorisée. Cela inclut également le transfert des images et du matériel vidéo dans des bases de données ainsi que la vente par des tiers.

Sidebar

01/2023

5232 — Le magazine de l'Institut Paul Scherrer

01/2023
Ouvrir sur Issuu.com
Téléchargement
S‘abonner au magazine

Follow PSI

 Twitter
 LinkedIn
 Youtube
 Facebook
 Instagram

Tous les réseaux sociaux


Centre de visiteurs psi forum

Vivez la recherche en direct


iLab, le labo des élèves

La science, inoubliable – la recherche, une aventure

top

Pied de page

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Suisse

Téléphone: +41 56 310 21 11
Téléfax: +41 56 310 21 99

Comment nous trouver 
Contact

Centre de visiteurs psi forum
Laboratoire élèves iLab (en allemand)
Centre de protonthérapie
Centre de Formation du PSI
PSI Guest House (en anglais)
PSI Gastronomie (en allemand)
psi forum shop

Service & Support

  • Annuaire
  • User Office
  • Accelerator Status
  • Publications du PSI
  • Fournisseurs
  • E-facture
  • Computing (en anglais)
  • Sicherheit (en allemand)

Carrière

  • Travailler au PSI
  • Offres d'emploi
  • Formation initiale et formation continue
  • Career Center
  • Formation professionnelle (en allemand)
  • Centre de Formation du PSI

Pour les médias

  • Le PSI en bref
  • Chiffres et faits
  • Le coin médias
  • Communiqués de presse
  • Réseaux sociaux

Suivez le PSI: Twitter (in English) LinkedIn Youtube Facebook Instagram Issuu RSS

Footer legal

  • Impressum
  • Conditions d'utilisation
  • Login éditeurs