Skip to main content
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Search
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIOpen mainmenu item
    • Research Initiatives
    • Ethics and Research integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsOpen mainmenu item
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Scientific Computing, Theory and Data
    • Large Research Facilities
  • Facilities and InstrumentsOpen mainmenu item
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesOpen mainmenu item
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • New ProjectsOpen mainmenu item
    • SLS 2.0
    • IMPACT
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

You are here:

  1. PSI Home
  2. Labs & User Services
  3. PSD
  4. LSC
  5. MicroSpec Group
  6. Scientific Highlights

Secondary navigation

MicroSpec

  • People
  • Research
  • Scientific Highlights and News
  • Pixelator
  • Publications

Scientific Highlights

Toggle filters
Datum
19 December 2022
Schuster periodogram power spectrum obtained from a time-resolved STXM image

From light-years to nanometers: reconstruction of unknown oscillations in STXM

From light-years to nanometers: by repurposing an algorithm originally developed for the investigation of oscillatory dynamics in astronomical objects, scientists have been able to image non-locked dynamical processes at the nanosecond and nanometer scale.

Read more
10 October 2022
Altar

Nanomaterial from the Middle Ages

Media Releases Research Using Synchrotron Light Miscellaneous

Unlocking the secrets of Zwischgold at PSI.

Read more
27 September 2022
SAF Skyrmion Nucleation

Nucleation of synthetic antiferromagnetic skyrmions

Magnetic skyrmions stabilized in synthetic antiferromagnets hold promise as nanoscale information carriers in novel non-volatile magnetic memory designs. In this work, scientists in a worldwide collaborative effort have demonstrated the electrically-induced nucleation of magnetic skyrmions in synthetic antiferromagnets, which is a vital stepping stone towards the applicability of these magnetic textures in devices.

Read more
26 September 2022
STXM images of ferrimagnetic skyrmions

Ferrimagnetic Skyrmions: fast and straight

Scientists have demonstrated, through magnetic X-ray microscopy, that magnetic skyrmions stabilized in ferrimagnetic heterostructures can be displaced by electrical currents at high velocities, and exhibit low deflection angles, proving that ferrimagnetic skyrmions are good candidates for fast skyrmionic devices.

Read more
20 April 2022
Peter Alpert working in the laboratory

Light amplification accelerates chemical reactions in aerosols

Aerosols in the atmosphere react to incident sunlight. This light is amplified in the interior of the aerosol droplets and particles, accelerating reactions. ETH and PSI researchers have now been able to demonstrate and quantify this effect and recommend factoring it into future climate models.

Read more
8 April 2022
toc_nl_trlamni_.gif

Into the fourth dimension: time-resolved soft X-ray laminography

Combining time-resolved soft X-ray STXM imaging with magnetic laminography, researchers were able to investigate magnetization dynamics in a ferromagnetic microstructure resolved in all three spatial dimensions and in time. Thanks to the possibility of freely selecting the frequency of the excitation applied to the magnetic element, this technique opens the possibility to investigate resonant magneto-dynamical processes, such as e.g. magnetic vortex core gyration and switching, and spinwave emission.

Read more
21 December 2021
Double Helix Spin configuration

3D printed nanomagnets unveil a world of patterns in the magnetic field

Scientists have used state-of-the-art 3D printing and microscopy to provide a new glimpse of what happens when taking magnets to three-dimensions on the nanoscale – 1000 times smaller than a human hair.

Read more
30 April 2021
Spin wave modes in a chiral artificial spin system.

Spin-wave dynamics in a chiral artificial spin system

Artificial spin ices are periodic arrangements of interacting nanomagnets which allow investigating emergent phenomena in the presence of geometric frustration. Recently, it has been shown that artificial spin ices can be used as building blocks for creating functional materials, such as magnonic crystals. Scientists have now investigated the GHz dynamics in a spin ice with a chiral geometry. They found that the system possesses a rich spin-wave spectrum owing to the presence of anisotropic magnetostatic interactions. These results contribute to the understanding of GHz magnetization dynamics in spin ices and are relevant for the realization of reconfigurable magnonic crystals based on spin ices.

Read more
18 March 2021
X-ray images reveal near-surface oxidation and radicals in the interior of submicrometer particles.

Looking inside airborne particles for the chemistry responsible for their adverse health effects.

Chemical changes inside of breathable airborne particles can cause reactive oxygen species (ROS) and carbon centered radicals (CCRs) to form, which are harmful to our bodies and induce oxidative stress in lungs. Using X-ray spectromicroscopy at the PolLux beamline and mimicking the environmental and sunlit conditions aerosol particles experience in the atmosphere near the Earth Surface, it was recently found that highly viscous organic particles with low water content can attain high concentrations of ROS and CCRs that persist over long times. Natural particles like these will occur in ambient humidity below 60% and effectively trap ROS and CCRs inside that react when exposed to light.

Read more
  • 1
  • 2
  • 3
  • 4
  • Next page ››
  • Last page Last »

Sidebar

Contact

Microspectroscopy Group

Dr. Jörg Raabe
Swiss Light Source
Paul Scherrer Institut
WSLA/006
5232 Villigen – PSI
Switzerland
Telephone: +41 56 310 5193
E-mail: joerg.raabe@psi.ch

Dr. Benjamin Watts
Swiss Light Source
Paul Scherrer Institut
WSLA/126
5232 Villigen – PSI
Switzerland
Telephone: +41 56 310 5516
E-mail: benjamin.watts@psi.ch

LSC Homepage

Laboratory for Condensed Matter Physics


Photon Science Division

Homepage of PSI Division Photon Science (PSD)


Scientific Highlights PSD

Scientific Highlights of PSI Division Photon Science (PSD)

Swiss Light Source SLS

Synchrotron light large research facility.

SwissFEL

The new X-ray free electron laser facility.


User Office

The PSI User Office is a central PSI installation to serve the users from all the four user laboratories.


Current openings PSD

Job Opportunities at Research Division Photon Science

top

Footer

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Switzerland

Telephone: +41 56 310 21 11
Telefax: +41 56 310 21 99

How to find us
Contact

Visitor Centre psi forum
School Lab iLab (in German)
Center for Proton Therapy
PSI Education Centre
PSI Guest House
PSI Gastronomie (in German)
psi forum shop

Service & Support

  • Phone Book
  • User Office
  • Accelerator Status
  • PSI Publications
  • Suppliers
  • E-Billing
  • Computing
  • Safety (in German)

Career

  • Working at PSI
  • Job Opportunities
  • Training and further education
  • Career Center
  • Vocational Training (in German)
  • PSI Education Center

For the media

  • PSI in brief
  • Facts and Figures
  • Media corner
  • Media Releases
  • Social Media

Follow us: Twitter (in English) LinkedIn Youtube Facebook Instagram Issuu RSS

Footer legal

  • Imprint
  • Terms and Conditions
  • Editors' login