Skip to main content
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Suche
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIOpen mainmenu item
    • Research on Covid-19
    • Research Initiatives
    • Ethics and Research integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsOpen mainmenu item
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Scientific Computing, Theory and Data
    • Large Research Facilities
  • Facilities and InstrumentsOpen mainmenu item
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesOpen mainmenu item
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • New ProjectsOpen mainmenu item
    • SLS 2.0
    • IMPACT
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

You are here:

  1. PSI Home
  2. Labs & User Services
  3. PSD
  4. SLS
  5. Micro XAS

Secondary navigation

Micro XAS

  • Status
  • User Information
    • Beamline User Support
    • Operation Schedule
  • People
  • Beamline Layout
    • Source
    • Optics
  • Endstations
    • MicroXAS
    • FEMTO
  • Research
  • Publications
  • Scientific Highlights and News
  • Contacts
microxas banner.png

microXAS - X05LA: Environmental & Materials Sciences

The microXAS beamline at the Swiss Light Source (SLS) corresponds to a versatile, in-vacuum undulator based hard x-ray microprobe facility. The beamline is covering the large spectral range from ~3keV up to ~23 keV, delivering monochromatic radiation as well as full ‘white’ light. Employing different focusing concepts, the beamline provides several types of high-brilliance focused beams, covering a large range of spatial resolutions from hundreds of micrometers down to nanometer size. The instrument is devoted to high resolution multimodal chemical imaging based on X-ray fluorescence, X-ray spectroscopy and X-ray diffraction techniques. The variety of complementary imaging modes can be employed routinely in quasi-simultaneous manner to record 2D images of several chemical properties. The progression of the imaging capabilities to full three dimensions using tomographic approaches is currently in progress.


Two additional features make the microXAS beamline a rather exceptional and exclusive X-ray microprobe facility. First, the microXAS beamline permits the investigation of radioactive materials and corresponds to the world-wide solely microprobe facility being able to analyze radioactive sample with 1µm spatial resolution. Second and definitely going beyond any existing X-ray microprobe instrumentation, the FEMTO project is an integral part of the microXAS beamline project. Ultrafast time-resolved X-ray studies with a resolution of picoseconds down to ~100 femtoseconds are ‘routinely’ carried out at the microXAS beam line.

Technical Overview

Energy range ~3 - 23 keV
Flux on sample 2 x 1012 ph/s/400 mA
Spot size on sample± 1 x 1 µm2
Polarization linear horizontal
Photon energy resolution 0.02%

Research Highlights

11 April 2022
Al3(Sc,Zr)

Thermal and phase evolution during laser powder bed fusion of Al-Sc-Zr elemental powder blends

The reaction of elemental scandium and zirconium powders with liquid aluminum is observed directly via operando X-ray diffraction during laser 3D printing. This work demonstrates that elemental blends can be used to create fine-grained crack-free Al-alloys and highlights the importance of feature size.

Read more
3 February 2022
Grolimund

Simulant material could aid in Fukushima cleanup

Research Using Synchrotron Light Materials Research Matter and Material

A new simulation of the most dangerous radioactive debris from the Fukushima nuclear power plant will help with clean-up efforts.

Read more
17 January 2022
Operando radiography

Direct observation of crack formation mechanisms with operando Laser Powder Bed Fusion X-ray radiography

Operando high-speed X-ray radiography experiments reveal the cracking mechanism during 3D laser printing of a Ni superalloy.

Read more

Sidebar

SLS Quicklinks

  • Beamlines Overview
  • Scientific Highlights
  • Experiments at SLS

User Contact Points at PSI

PSI User Office
DUO Login

Call for Proposals

PX Beamlines: Call is open for proposals
More Information

All other Beamlines
08 February 2020: Call is open for proposals
More Information

Upcoming Events

Get a list of upcoming scientific conferences and seminars

PSI User Facilities Newsletter

Current News from PSI photon, neutron and muon user facilities
top

Footer

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Switzerland

Telephone: +41 56 310 21 11
Telefax: +41 56 310 21 99

How to find us
Contact

Visitor Centre psi forum
School Lab iLab (in German)
Center for Proton Therapy
PSI Education Centre
PSI Guest House
PSI Gastronomie (in German)
psi forum shop

Service & Support

  • Phone Book
  • User Office
  • Accelerator Status
  • PSI Publications
  • Suppliers
  • E-Billing
  • Computing
  • Safety (in German)

Career

  • Working at PSI
  • Job Opportunities
  • Training and further education
  • Vocational Training (in German)
  • PSI Education Center

For the media

  • PSI in brief
  • Facts and Figures
  • Media corner
  • Media Releases
  • Social Media

Follow us: Twitter (in English) LinkedIn Youtube Facebook Instagram Issuu RSS

Footer legal

  • Imprint
  • Terms and Conditions
  • Editors' login