Skip to main content
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Suche
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIOpen mainmenu item
    • Research Initiatives
    • Research Integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsOpen mainmenu item
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Large Research Facilities
  • Facilities and InstrumentsOpen mainmenu item
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesOpen mainmenu item
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

You are here:

  1. PSI Home
  2. Labs & User Services
  3. PSD
  4. LMN
  5. People
  6. Helmut Schift

Secondary navigation

Laboratory for Micro and Nanotechnology

  • About LMN
    • Organisational Structure
  • Open Positions
  • People
  • Research Groups
    • Nanotechnology
    • X-ray Optics and Applications
      • X-ray Optics for Imaging and Spectroscopy
        • Fresnel Zone Plate for X-ray Microscopy
        • Blazed X-ray Optics
        • Zernike X-ray Phase Contrast Microscopy
        • Fresnel Zone Plates for RIXS
        • Refractive Lenses by 2 Photon 3D Lithography
      • Wavefront Metrology and Manipulation
        • Vortex Fresnel Zone Plates
        • Grating-based Wavefront Metrology
      • X-ray Optics for XFELs
        • Diamond Fresnel Zone Plates
        • Beam Splitter Gratings for Spectral Monitoring
        • A Delay Line for Ultrafast Pump-Probe Experiments
        • X-ray Streaking for Ultrafast Processes
    • Polymer Nanotechnology
      • Nanoimprint Lithography
      • Three Dimensional Structures
    • Molecular Nanoscience
      • On-surface Chemistry
      • Spins in Molecular Monolayers
      • SiC: Surfaces and Interfaces
      • Our Research Team
    • Advanced Lithography and Metrology
      • EUV Interference Lithography
      • EUV Lensless Imaging
      • ALM Nanoscience
    • Quantum Technologies
      • News and highlights
      • People
      • Open positions
      • Current projects
        • 2D semiconductor devices
        • CDW-based memory devices
        • Imaging quantum many-body states
        • Nonlinear magnonics
        • Rare-earth quantum magnets
        • Strained Germanium laser
      • Techniques
        • Cristallina-Q
        • IR beamline
        • Nano-fabrication
      • Publications
      • QTC@PSI
  • Facilities and Equipment
    • Cleanroom Labs
    • Surface Science Lab
    • Scanning Electron Microscopy
    • Scanning Probe Microscopy
    • PEARL Beamline
    • XIL Facility at the SLS
    • Nanoimprint Facilities
    • Electron Beam Lithography
  • LMN News
  • LMN Highlights
    • Archive
  • Publications
    • Publications 2011 - 2016

Dr. Helmut Schift

Schift

Head of Polymer Nanotechnology (INKA-PSI) and Consultant Research Integrity

Paul Scherrer Institute
Forschungsstrasse 111
5232 Villigen PSI
Switzerland
Telephone
+41 56 310 28 39
Email
helmut.schift@psi.ch



Polymer Nanotechnology is aiming to provide solutions for different applications of polymer surfaces, by modifying surfaces by patterning, exposure, thermal treatment and coating. Current examples are supersmooth surfaces for micro-optics, surfaces with controlled wetting for printed electronics, surfaces with antireflective, antiadhesive, antifriction properties, modifying channel geometries for micro- and nanofluidics. The applications range from fundamental research with large scale fabilities to industrial products.

Biography

Helmut Schift studied electrical engineering at the University of Karlsruhe, and performed his Ph.D. studies at the Institute of Microtechnology Mainz (IMM), Germany. He has specialized in micro-optics, high aspect ratio lithography and polymer replication (LiGA technology). After his graduation in 1994, he joined the Paul Scherrer Institute as research staff member, where he has subsequently built up and established a technology platform for nanoimprint lithography (NIL). As one of the pioneers, H. Schift developed enabling techniques for the patterning of functional surfaces with topological and chemical surface contrast, and used these processes in different research and application fields. Since 2001, he is Lecturer at the University of Applied Sciences and Arts (Fachhochschule) Nordwestschweiz for engineering students on “Micro- and Nanotechnology”. In 2002, he became head of the Polymer Nanotechnology Group (INKA-PSI). During a sabbatical in 2011, he was employed as a visiting professor (Velux grant) in the Optofluidics group in the Department of Micro- and Nanotechnology at the Danish Technical University (DTU). H. Schift is a co-author of 140 scientific papers, including reviews and book chapters, and editor of the NaPa Library of Processes. He has supervised many scientific projects and participated in several PhD juries. In the European FP7 NaPANIL project (2008-2012), H. Schift was sub-project leader with over 1000 person months. He received the Swiss Technology Award (2005, Sonderpreis Ostschweizer Kantone) and Nanoimprint Pioneer Award (2016). In 2016 he was recognized by the AVS Journal of Vacuum Science and Technology as one of its Most Valuable Reviewers. Since 2019, H. Schift is Consultant on Research Integrity (30%) at PSI. For this purpose, he is currently pursuing studies of Applied Ethics at the University of Zürich.

Institutional Responsibilities

As head of the Polymer Nanotechnology Group (INKA-PSI), H. Schift is responsible for the development of enabling techniques for various projects with academic and industrial partners. Since 2006 this has been in the framework of the Institute for Polymer Nanotechnology INKA (a "joint venture" between PSI and the University of Applied Sciences and Arts Nordwestschweiz FHNW), and since 2020 for the new center for technology transfer ANAXAM (Angewandte Materialanalytik mittels Neutronen- und Röntgenstrahlung), which is directed towards Advanced Manufacturing and Applied Research for Large Scale Facilities. As Consultant for Research Integrity, H. Schift assures internal and external information exchange, supports and organizes training on ethical conduct in research and consults PSI personnel on all levels.

Scientific Research

At PSI, nanoimprint lithography (NIL) has become a key manufacturing technology in a range of applications in the area of nano-electrodes, nano-sieves, photonic crystals, liquid-crystal displays, micro- and nano-optics etc. The developments also comprise surface energy related topics such as antiadhesive coatings, chemical patterning of surfaces, hierarchical and hybrid structuring, 3D surface patterning and upscaling using fast imprint processes, roll-to-roll imprint and injection molding. The polymer nanotechnology group contributed via development of technology, tools, and processes, i.e. the full toolbox for replication processes needed for academic research and industrial applications. This toolbox is further enlarged within the framework of the Institute for Polymer Nanotechnology (INKA) and via collaborations with industry and research partners on national and international level, including the technology transfer center ANAXAM. In the future InnoFab, the PSI cleanrooms for Micro- and Nanomanufacturing, NIL and 3D surface patterning are key technologies for the further development of X-ray optics, micro- and nanofluidics, membrane holders for protein crystallography, micro- and nano-optics and quantum chips for "beyond-Moore" information technology.

Selected Publications

For an extensive overview we kindly refer you to our publication repository DORA.


Sub-micron silver wires on non-planar polymer substrates fabricated by thermal nanoimprint and back injection molding, S. Xie, B. Horváth, J. Werder, and H. Schift, Micro and Nano Eng. 8, 100062 (2020).

Fabrication of large area sub‐200 nm conducting electrode arrays by self‐confinement of spincoated metal nanoparticle inks, B. Horváth, B. Křivová, S. Bolat, and H. Schift, , Adv. Mat. Technol. 3(4) 1800652 (11 pp) (2019).

In the framework of the Special Focus Area project FOXIP, INKA-PSI develops new solutions for flexible printed electronics. Several publications demonstrate new findings on nanopatterning via nano-particle ink confinement. In particular, the fabrication of sub 200 nm lines from silver inks with 50 nm particles shows that low-cost methods and materials can be used for the fabrication of line widths much smaller than typically achieved by printed electronics.


Thermal reflow of polymers for innovative and smart 3D structures: A review, R. Kirchner and H. Schift, T, Mat. Sci. Semiconduct. Proc. 92, 58-72 (2019).
Selective surface smoothening of polymer microlenses by depth confined softening, N. Chidambaram, R. Kirchner, R. Fallica, L. Yu, M. Altana, and H. Schift, Adv. Mater. Technol., 1700018 (10 pp) (2017).
For future devices, 3D lithography becomes a highly relevant pattern technique that goes beyond the capabilities of  binary lithography. We have development new solutions for ultrasmooth surfaces in the sub-micron range for diffractive optical elements and micron range for micro-optics. In particular sub-10 nm roughness was achieved by using selective modification of polymer surfaces and confined thermal reflow, by exploiting the characteristic behavior of PMMA.

 

High-aspect-ratio nanoimprint process chains, V.J. Cadarso, N. Chidambaram, L. Jacot-Descombes, and H. Schift, Microsystems & Nanoengineering 3, 17017 (12 pp) (2017).

Nanoimprint lithography: 2D or not 2D? A review, H. Schift, Applied Physics A 121(2) 415-435 (2015).
Nanoimprint lithography is a next generation lithography method with capabilities beyond standard resist processing techniques. It opens lithography up to a variety of materials and is not limited by optical diffration, thus enabling single-digit resolutions. By patterning high aspect ratio structures and 3D surface topographies, nanoimprint lithography goes beyond normal lithography and opens the way for novel sensors and devices.

 

Integrated photonic nanofences: combining subwavelength waveguides with enhanced evanescent field for sensing applications, V.J. Cadarso, A. Llobera, M. Puyol, and H. Schift, ACS Nano 10, 778–785 (2016).

Novel sensor concepts using state-of-the-art photonics are employed for the fabrication of chemical sensors with high sensitivity, by enhancing the evanescent field and thus the interaction of light with the chemical compounds to be mesured.

 

Books and Book Chapters

Imprint lithography, Chapter (11) in Microlithography, D. Resnick and H. Schift, third edition, eds. B. Smith and K. Suzuki, CRC Press, Francis and Taylor, pp. 594-675, May 21, 2020, ISBN 9781439876756.

Nanoimprint lithography - patterning resists using molding. H. Schift and A. Kristensen, Chapter (Part A/9) in Handbook of Nanotechnology, Vol. ed. B. Bhushan, fourth edition, Springer Verlag Berlin Heidelberg, Germany, 271-312 (2017). ISBN: 978-3-642-02524-2.

Nanostructured polymers for medical applications, P. Urwyler and H. Schift, Chapter in Nanoscience and Nanotechnology for Human Health, Eds. B. Müller and M. Van de Voorde, First Edition, Wiley-VCH Verlag GmbH & Co. KGaA, 3, 293-314 (2017), ISBN: 978-3-527-33860.

NaPANIL library of processes – nanopatterning, production and applications based on NanoImprinting Lithography, third edition. Editor H. Schift, published by the NaPANIL-consortium (2014).

Nanoimprinting technology for biological applications, S. Park and H. Schift, Chapter in BioMEMS and biomedical nanotechnology, ed. M. Ferrari, Vol-4 ”Biomolecular Sensing, Processing and Analysis”, Vol. eds. R. Bashir, S. Wereley, Springer Verlag, Berlin, Germany, 95-117 (2007). ISBN: 978-0-387-25561-3.

Roll embossing and roller imprint, H. Schift, Chapter (5) in “Science and new technology in nanoimprint”. Volume editor Y. Hirai. Frontier Publishing Co., Ltd., Japan, ISBN4-902410-09-5, English 74-89, Japanese translation (extract) 90-93 (2006).

Nanorheology - squeezed flow in hot embossing of thin films, H. Schift and L.J. Heyderman, Chapter (4) in Alternative lithography – unleashing the potential of nanotechnology. Vol. ed. C. Sotomayor Torres, book series on Nanostructure Science and Technology in Kluwer Academic/Plenum Publishers, ed. D.J. Lockwood, 46-76 (2003). ISBN 0-306-47858-7




 

 

 

Sidebar

Further Information

  • Laboratory for Micro and Nanotechnology
  • Institute of Polymer Nanotechnology


Research Topics

  • Nanoimprint Lithography
  • 3D Structures


NaPANIL Library of Processes

  • DOWNLOAD 7MB


Media

  • The cleanest place
  • Der reinste Ort des PSI
  • L'endroit le plus propre
  • Micro-Matterhorn
  • Mikro-Matterhorn
  • Cervin miniature
  • 30 Jahre PSI
top

Footer

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Switzerland

Telephone: +41 56 310 21 11
Telefax: +41 56 310 21 99

How to find us
Contact form

Visitor Centre psi forum
School Lab iLab (in German)
Center for Proton Therapy
PSI Education Centre
PSI Guest House
PSI Gastronomie (in German)

 

Service & Support

  • Phone Book/People Search
  • User Office
  • Accelerator Status
  • PSI Publications
  • Suppliers
  • E-Billing
  • Computing
  • Safety (in German)

Career

  • Working at PSI
  • Job Opportunities
  • Training and further education
  • Vocational Training (in German)
  • PSI Education Center

For the media

  • PSI in brief
  • Facts and Figures
  • Media Contact
  • Media Releases
  • Social Media Newsroom

Follow us: Twitter (in English) LinkedIn Youtube Issuu RSS

Footer legal

  • Imprint
  • Terms and Conditions
  • Editors' login