Skip to main content
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Search
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIOpen mainmenu item
    • Research Initiatives
    • Ethics and Research integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsOpen mainmenu item
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Scientific Computing, Theory and Data
    • Large Research Facilities
  • Facilities and InstrumentsOpen mainmenu item
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesOpen mainmenu item
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • New ProjectsOpen mainmenu item
    • SLS 2.0
    • IMPACT
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

You are here:

  1. PSI Home
  2. Labs & User Services
  3. PSD
  4. LSC
  5. SMAM
  6. Scientific Highlights
  7. Solidification modes during additive manufacturing

Secondary navigation

Structure and Mechanics of Advanced Materials

  • People
  • Research
    • Additive Manufacturing
    • Alignment in flow
    • Biological Tissue
    • In situ mechanical testing
    • Polymer Material
    • Tensor Tomography
  • Infrastructure
    • Selective Laser Melting
    • Deformation rigs
      • Micro Tensile Machine
      • Tension/Compression Module
      • Mini biaxial tensile machine
      • Meso biaxial tensile machine
      • Micro Shear Device
      • Micro Compression Device
  • Publications
  • Scientific Highlights
24 January 2023

Solidification modes during additive manufacturing

Solidification during fusion-based additive manufacturing is characterized by high solidification velocities and large thermal gradients, two factors that control the solidification mode of metals and alloys. Using two synchrotron-based, in situ setups, we perform high-speed X-ray diffraction measurements to investigate the impact of the solidification velocities and thermal gradients on the solidification mode of a hot-work tool steel over a wide range of thermal conditions. 

Tool Steel Overview
High-speed X-ray diffraction during laser powder bed fusion of tool steel was performed at the MicroXAS beam line of the Swiss Light Source and the 1-ID-E beam line of the Advanced Photon Source. At slow cooling rates, δ-ferrite is observed upon solidification from the melt, whereas at high cooling rates δ-ferrite is suppressed, and primary austenite is observed. This is in good agreement with the predictions of a Kurz-Giovanola-Trivedi based solidification model.

Additive manufacturing (AM) of metals, or metal 3D printing, has attracted increasing attention due to the geometrical design freedom, allowing for new, previously unimaginable applications of metallic materials. The most common metal AM technology is based on melting and subsequent solidification of metal powder layers using a laser energy source, i.e., laser powder bed fusion (L-PBF), where metallic components are created layer-by-layer from the powder feedstock. The high laser scanning speeds create comparable small melt pools that solidify rapidly resulting in solidification structures governed by highly transient solidification conditions. For conventional metallurgical processes, solidification can often be described by assuming local equilibrium at the solidification front (the phase boundary) between the liquid and solid phases. However, at the high solidification velocities typical for the AM processes, deviation from such a local-equilibrium assumption is expected.

In the present study, we utilize two different in situ L-PBF sample environments implemented at MicroXAS of the Swiss Light Source and at 1-ID-E  of the Advanced Photon Source to understand the solidification modes of a hot-work tool steel under two processing conditions. The goal is to elucidate the solidification mode, focusing on the change of the solidification mode from primary δ-ferrite to primary γ with increasing solidification velocity. 

The solidification mode of primary δ-ferrite is observed at a cooling rate of 2.12 × 104 K/s, whereas at a higher cooling rate of 1.5 × 106 K/s, δ-ferrite is suppressed, and primary austenite is observed. The experimental thermal conditions are evaluated and linked to a Kurz-Giovanola-Trivedi (KGT) based solidification model. The modelling results show that the predictions from the multicomponent KGT model agree with the experimental observations. This work highlights the role of in situ XRD measurements for a fundamental understanding of the microstructure evolution during AM and for validation of computational thermodynamics and kinetics models, facilitating parameter and alloy development for AM processes.

Contact

Dr. Steven Van Petegem
Structure and Mechanics of Advanced Materials
Photon Science Division 
Paul Scherrer Institute
Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
Telephone: +41 56 310 2537 
E-mail: steven.vanpetegem@psi.ch

Original publication

Solidification modes during additive manufacturing of steel revealed by high-speed X-ray diffraction
Hans-Henrik König, Niklas Holländer Pettersson, A. Durga, Steven Van Petegem, Daniel Grolimund, Andrew Chihpin Chuang, Qilin Guo, Lianyi Chen, Christos Oikonomou, Fan Zhang, Greta Lindwall
Acta Materialia 246 (2023) 118713
DOI: 10.1016/j.actamat.2023.118713

Sidebar

Contact

Structure and Mechanics of Advanced Materials Group

Paul Scherrer Institut
WBBA/114
5232 Villigen-PSI
Switzerland

Prof. Dr. Marianne Liebi
Group Leader
Telephone: +41 56 310 44 38
E-mail: marianne.liebi@psi.ch

Dr. Steven Van Petegem
Senior scientist
Telephone: +41 56 310 25 37
E-mail: steven.vanpetegem@psi.ch

LSC Homepage

Laboratory for Condensed Matter Physics


Photon Science Division

Homepage of PSI Division Photon Science (PSD)


Scientific Highlights PSD

Scientific Highlights of PSI Division Photon Science (PSD)

Swiss Light Source SLS

Synchrotron light large research facility.

SwissFEL

The new X-ray free electron laser facility.


User Office

The PSI User Office is a central PSI installation to serve the users from all the four user laboratories.


Current openings PSD

Job Opportunities at Research Division Photon Science

top

Footer

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Switzerland

Telephone: +41 56 310 21 11
Telefax: +41 56 310 21 99

How to find us
Contact

Visitor Centre psi forum
School Lab iLab (in German)
Center for Proton Therapy
PSI Education Centre
PSI Guest House
PSI Gastronomie (in German)
psi forum shop

Service & Support

  • Phone Book
  • User Office
  • Accelerator Status
  • PSI Publications
  • Suppliers
  • E-Billing
  • Computing
  • Safety (in German)

Career

  • Working at PSI
  • Job Opportunities
  • Training and further education
  • Career Center
  • Vocational Training (in German)
  • PSI Education Center

For the media

  • PSI in brief
  • Facts and Figures
  • Media corner
  • Media Releases
  • Social Media

Follow us: Twitter (in English) LinkedIn Youtube Facebook Instagram Issuu RSS

Footer legal

  • Imprint
  • Terms and Conditions
  • Editors' login