Lab News & Scientific Highlights

3D image of a magnetic skyrmion

Skyrmion topology quantified in 3D

Researchers from an international collaboration between the United States of America and Switzerland have performed three-dimensional magnetic imaging of a magnetic skyrmion using soft X-ray laminography. This allowed for the investigation, in three dimensions, of the topological profile of the magnetic skyrmions.

multiferroicity-in-rnio3-perovskites

Elusive multiferroicity in RNiO3 perovskites

In our recent paper we examined YNiO3 and proved that the RNiO3 type material known for its metal-insulator transition is in fact a type II multiferroic. We provide direct evidence of an electric-field-driven switch of the noncolliear magnetic state finally confirming the proposed type II multiferroic nature of YNiO3.

Teaser

Move the soft mode by electric fields in quantum paraelectric SrTiO3

PSI Researcher used inelastic neutron scattering to show how collective lattice vibrations can be controlled by electric fields. These results indicate that different eigenmodes can couple in field in this incipient ferroelectric.

NeelVectorMap

Spatially reconfigurable topological textures in freestanding antiferromagnetic nanomembranes

Researchers from the University of Oxford have imaged, through the use of the soft X-ray microscopy capabilities at the Swiss Light Source, spatially reconfigurable antiferromagnetic states in topologically rich free-standing nanomembranes

octahedra rotation

Short x-ray pulses reveal the source of light-induced ferroelectricity

Ultrafast measurements of the fluctuating atomic positions in the quantum paraelectric SrTiO3 after mid-infrared light excitation, reveal details about the creation of the material’s ferroelectric state.

recrystallization_ebsd_teaser

Observing laser-induced recrystallization

Synchrotron X-ray diffraction sheds  light on laser-induced local recrystallization .

text

Switching Off the Surface Conductivity of Strontium Titanate by Non-Volatile Organic Adsorbates

Strontium titanate is a wide band gap semiconductor. Its surface can be rendered conductive by a mild annealing in vacuum. The present study reveals that by deposition of less than a monolayer of non-volatile organic molecules such as tetracyanoquinodimethane (TCNQ) this conductivity can be completely turned off. In view of the small size of TCNQ (ca. 1 nm) this could allow new pathways toward oxide-based electronics.

MiniSLM

Microstructural control of additively manufactured Ti-6Al-4V



In-situ Selective Laser Heat treatment is applied to induce martensite decomposition in Ti-6Al-4V

Tv=60K scale on magnetization

Crystal field rules heavy fermion delocalization in SmCoIn5

Crystal field rules heavy fermion delocalization

Energy Storage Materials 2023

"Core-shell" cathodes for high performance Li-ion batteries

“Li-rich Ni-rich” core-shell particles are engineered as layered cathode materials for high energy Li-Ion batteries, including a controllable outer "Li-rich Mn-rich" shell improving cyclability.

optical magnetization switching

Mechanism For All-Optical Magnetization Switching

X-rays reveal a non-collinear magnetic state as the base for all-optical magnetization switching.

Recrystallization

Additive manufacturing of alloys with programmable microstructure and properties

Using laser powder bed fusion (LPBF) technology, we devise special processing strategies to ‘program’ the thermal stability of the as-printed alloy, such that it is possible to decide, a priori, how the material’s microstructure will evolve upon heat treatment

BiFeO3 nanofish

Biffo the fish: BiFeO3 nanoplate wins the Magnetism Art Competition at JEMS 2023 in Madrid

Dr. Tim A. Butcher from the Microspectroscopy group was awarded the first prize in the "Art in Magnetism" competition of the JEMS 2023 conference with his contribution "Biffo", obtained from a ptychography image of a BiFeO3 nanoplate.