Skip to main content
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI) Paul Scherrer Institut (PSI)
Suche
Paul Scherrer Institut (PSI) Paul Scherrer Institut (PSI)

Hauptnavigation

  • Labs & User ServicesOpen mainmenu item
    • Overview
    • Research at PSI
    • Research Divisions and Labs
    • Facilities and Instruments
    • Research Initiatives
    • PSI User Labs
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • Useroffice
  • VisitorsOpen mainmenu item
    • Overview
    • Contact
    • How to find us
    • Public Events
    • Visitor Centre psi forum
    • Schülerlabor iLab
    • Center for Proton Therapy
  • IndustryOpen mainmenu item
    • Overview
    • Technology Transfer
    • Spin-off Companies
    • PARK innovAARE
  • Our ResearchOpen mainmenu item
    • Current topics from our research
    • Matter and Material
    • Human Health
    • Energy and Environment
    • Large Research Facilities
    • Brochures
    • Films
    • Media Corner
  • Career & Further EducationOpen mainmenu item
    • Job Opportunities
    • Personnel Policy
    • Working at PSI
    • Equal Opportunities, Diversity & Inclusion
    • Training and Further Education
    • Vocational Training
    • PSI Education Centre
    • Support Program "PSI Career Return Program"
    • PSI-FELLOW/COFUND
  • About PSIOpen mainmenu item
    • PSI in brief
    • Strategy
    • Guiding principles
    • Facts and figures
    • Organisational structure
    • Suppliers and customers
    • Customers E-Billing
    • IT and Computing
    • Safety at PSI (in German)

You are here:

  1. PSI Home
  2. Labs & User Services
  3. ENE
  4. LEC
  5. Research Groups
  6. Fuel Cell Systems and Diagnostics
  7. - Fuel Cell Diagnostics

Secondary navigation

Electrochemistry Laboratory (LEC)

  • About LEC
  • Scientific Highlights
  • People
  • Research Groups Expanded submenu item
    • Battery Materials and Diagnostics
    • Battery Electrodes and Cells
    • Electrocatalysis and Interfaces
    • Fuel Cell Systems and Diagnostics Expanded submenu item
      • - Fuel Cell Systems
      • - Fuel Cell Diagnostics
      • - People
      • - Publications
      • - Partners
      • - Infrastructure and Services
    • Membranes and Electrochemical Cells
    • Neutron Imaging of Electrochemical Systems
      • NRES Projects
        • Patterned Wettability GDLs
        • Evaporative Cooling
        • PEWE Water Management
      • NRES Methods
        • Full Size Imaging
        • In plane imaging
        • Multi-cell
        • Losses Breakdown
        • GDL Dark field imaging
        • Water/Ice Distinction
      • NRES People
      • NRES Publications
    • Former Electrochemical Energy Storage
    • Former Electrochemical Energy Conversion
  • Instruments and Tools
  • Teaching
  • Seminar
  • Awards
  • Publications
  • LEC Annual Reports
  • News
  • PSI Electrochemistry Symposium
3dropletsbanner.bmp

Fuel Cell Diagnostics

Fuel cell characterization by various diagnostic methods and understanding of the function and lifetime behavior of fuel cell components for PEFC and HTPEFC's is the vision and the mission of the fuel cell diagnostic activity. This encloses the ex-situ characterization, the in-situ performance and durability testing, as well as the numerical modeling of the processes. The diagnostic methods comprise impedance spectroscopy, local gas phase analytics, in-situ tomographic characterization, as well as locally resolved electrochemical experiments on various scales. Active area of sub cm² single cells up to several 100 cm² stacks for mobile applications can be tested.

Operando X-ray Tomographic Imaging of Water in PEFC

XRayTomo.jpg
Water management is the major limiting factor in PEFC for further increasing the power density. Fast synchrotron and conventional CT X-ray tomographic microscopy (XTM) enables the investigation of the water management by 3D visualization and quantification of stationary and transient water saturation in the porous materials in model experiments and under real operating conditions. This data is key for future developments with respect to performance, durability and cost.

Polymer Electrolyte Water Electrolysis (PEWE)

PEWE.png
Fast start-up, dynamic operation, high differential pressures and production of high purity hydrogen up to high current densities make PEWE an interesting technology for storage of fluctuating (excess) renewable power. The fundamental understanding of kinetic and mass transport process in PEWE is our core interest. Porous materials are characterized using X-ray tomographic imaging and electrochemical methods.

High temperature polymer electrolyte fuel cells (HT-PEFCs)

HTPEFC.jpg
HT-PEFCs are used in residential, combined heat and power applications. A crucial parameter for a broader commercialization of HT-PEFCs is to extend their lifetime up to 50’000 h. The study of individual degradation parameters is therefore of high importance. Both, X-ray tomographic microscopy (ex-situ and operando) as well as electrochemical characterization are used to gain a deeper inside into these phenomena.

Sidebar

Contact

Group Head
Dr. F. N. Büchi
Paul Scherrer Institut
5232 Villigen-PSI
Switzerland

Phone: +41 56 310 2411
E-mail: felix.buechi@psi.ch


Secretary
Cordelia Gloor
Phone: +41 56 310 29 19
E-mail: cordelia.gloor@psi.ch
top

Footer

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Switzerland
How to find us

Imprint
Terms and Conditions

Login

Telephone: +41 56 310 21 11
Telefax: +41 56 310 21 99
Contact form

Visitor Centre psi forum
School Lab iLab (in German)
Center for Proton Therapy

Follow us: Twitter (in English) LinkedIn Youtube Issuu RSS

Quicklinks

  • Phone Book/People Search
  • Digital User Office
  • Technology transfer
  • PSI Publications
  • Computing
  • Safety (in German)
  • Job Opportunities
  • Vocational Training (in German)
  • Suppliers
  • Customers E-Billing
  • PSI Guest House
  • PSI Gastronomie (in German)

For the media

  • Media Contact
  • Media Releases
  • Social Media Newsroom
  • Facts and Figures
  • PSI in brief
  • Films
  • DE
  • EN
  • FR