Skip to main content
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Suche
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIOpen mainmenu item
    • Research Initiatives
    • Research Integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsOpen mainmenu item
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Large Research Facilities
  • Facilities and InstrumentsOpen mainmenu item
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesOpen mainmenu item
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

You are here:

  1. PSI Home
  2. Labs & User Services
  3. ENE
  4. LEC
  5. Research Groups
  6. Electrocatalysis and Interfaces

Secondary navigation

Electrochemistry Laboratory (LEC)

  • About LEC
  • Scientific Highlights
  • People
  • Research Groups Expanded submenu item
    • Battery Materials and Diagnostics
    • Battery Electrodes and Cells
    • Electrocatalysis and Interfaces
    • Fuel Cell Systems and Diagnostics
      • - Fuel Cell Systems
      • - Fuel Cell Diagnostics
      • - People
      • - Publications
      • - Partners
      • - Infrastructure and Services
    • Membranes and Electrochemical Cells
    • Neutron Imaging of Electrochemical Systems
      • NRES Projects
        • Patterned Wettability GDLs
        • Evaporative Cooling
        • PEWE Water Management
      • NRES Methods
        • Full Size Imaging
        • In plane imaging
        • Multi-cell
        • Losses Breakdown
        • GDL Dark field imaging
        • Water/Ice Distinction
      • NRES People
      • NRES Publications
    • Former Electrochemical Energy Storage
    • Former Electrochemical Energy Conversion
  • Instruments and Tools
  • Teaching
  • Seminar
    • LEC Seminar Archive
  • Awards
  • Publications
  • LEC Annual Reports
  • News
  • PSI Electrochemistry Symposium
XPS 2s.jpg

Electrocatalysis and Interfaces

Project Description

The Electrocatalysis and Interfaces Group was established in 2012 combining the electrocatalysis activites of the former Fuel Cell Group and the Interface analytical activities of the former Interface and Capacitor Group.
Electrocatalysis is the key topic for electrochemical energy conversion. In order to optimize rate, selectivity, energy and stability of a certain electrochemical reaction - such as oxygen reduction, oxygen evolution, hydrogen oxidation, and CO2 reduction - proper catalysts have to be developed and optimized. The respective surface and interface analytical tools are essential for the understanding of the catalyst and are utilized in the group.

Therefore the activities of the group cover two focal points - Electrocatalysis and Interface analysis including Electrochemical capacitors.

Electrocatalysis - opens new routes towards more efficient fuel cells and other electrochemical processes e.g. CO2 reduction. The group's main topics are investigations of the effect and utilization of oxides as support for O2 reduction catalysts and the optimization of CO2 reduction catalysts. Catalysts for electrolysis and reversible fuel cells are also studied in our group.

Interfaces - Surface analysis is essential for the understanding and optimization of catalytic and electrochemical interfaces and provides information about processes and electronic and molecular properties on a microscopic scale. The main topics at present are catalysis of nano particles and electrocatalysis. We also developed in situ UHV electrochemical cells for in situ studies of the electrolyte|electrode interface, in particular the ionic liquid | electrode interface.

In addition we provide support for customers within and outside PSI.
 

Research Team

Group members as of December 2017
Group members as of December 2017
  • Thomas J. Schmidt, head
  • Dino Aegerter
  • Casey Beall
  • Anthony Boucly (LEC+LUC)
  • Piyush Chauhan
  • Justus Diercks
  • Nataša Diklic
  • Emiliana Fabbri
  • Meriem Fikry
  • Adrian Heinritz
  • Juan Herranz
  • Julia Linke
  • Seçil Ünsal Dayanık

Former Group Members

Bernhard Pribyl-Kranewitter 2017-2021 Kearney
Alexandra Patru 2013-2020 Sensirion
Kathrin Ebner 2017-2020 Bauhaus Luftfahrt
Viktoriia Saveleva 2018-2020 ESRF - European Synchrotron
Mauro Povia 2015 - 2019 Ecxelsus Structural Solutions
Daniel Abbott 2015 - 2019 ETH Zurich
Baejung (Joseph) Kim 2015 - 2019 Hyundai Mobis
Daniele Perego 2017 - 2019  
Anastasia A. Permyakova 2014 - 2018 ABB
Xi Cheng 2014 - 2017 PSI - Thin films and interfaces
Susan Taylor 2014 - 2017 RD Graphene
Tobias Binninger 2012 - 2017 NCCR Marvel
Simon Tschupp 2013 - 2017 Axetris 
Sandra Temmel 2012 - 2016 Elring Klinger
Yohan Paratcha 2014 - 2016  
Annett Rabis 2011 - 2015  
Julien Durst 2014 - 2015 Air Liquide
Kay Waltar 2013 - 2015 ETH Zürich
Anja Habereder 2013 - 2014  
Mehtap Özaslan 2012 - 2014 Carl von Ossietzky Universität Oldenburg
Rüdiger Kötz 1989 - 2014 Elsevier
Moritz Hantel 2010 - 2013 SABIC
Daniel Weingarth 2010 - 2013 INM Leibniz Institute for New Materials
Jorge Ferreira de Araújo 2012 - 2013 Technische Universität Berlin
Annette Foelske-Schmitz 2004 - 2013 Technische Universität Wien
Paramaconi Rodriguez 2011 - 2012 University of Birmingham
Yuri Sasaki 2010 - 2011 Toyota Central R&D Laboratories, Inc.
Anastasia Peitz 2008 - 2011 ABB Schweiz AG, Micafil, Klingnau
Dario Cericola 2008 - 2011 TIMCAL Ltd, Bodio
Patrick Ruch 2005 - 2009 IBM Research Lab. Zürich
Jörg Wambach 2007 - 2009 LBK (PSI)
François Loviat 2007 - 2008 Sulzer Ltd
Jean-Claude Sauter 2001 - 2007 RUAG Aerospace
Matthias Hahn 1999 - 2007 EL-Cell GmbH
Olivier Barbieri 2003 - 2006 Spare Parts Operations Manager at Cartier
Flavio Campana 2001 - 2005 Cendres+Métaux SA
Carolin Stoessel-Sittig 2002 - 2004  
Bernhard Schnyder 1991 - 2004 Micro Crystal, Div. of ETA SA
Martin Baertschi 1999 - 2001  
Martin Baertsch 1995 - 2001 Swissmedic
Dario Aliatta 1997 - 2000 Rudolph Technologies
Artur Braun 1996 - 1999 EMPA
Pascal Haering 1994 - 1998 Renata SA
Melanie Sullivan 1992 - 1996  
Rainer Michaelis 1993 - 1995 Praxis für Musik-/Klangtherapie
Cesar Barbero 1989 - 1994 Universidad Nacional de Rio Cuarto
Maria C. Miras 1989 - 1994 Universidad Nacional de Rio Cuarto

Selected Publications (2021-2014)

For previous publications see Publications Annual

Investigation and Optimization of Operating Conditions for Low-Temperature CO2 Reduction to CO in a Forward-Bias Bipolar-Membrane Electrolyzer B. Pribyl-Kranewitter, A. Patru, T. Schuler, N. Diklic, T.J. SchmidtJ. Electrochem. Soc. X, XXX-XXX (2021)DOI: 10.XXXX.XXXX/XXXXXXXXXX

  • Effect of Cobalt Speciation and the Graphitization of the Carbon Matrix on the CO2 Electroreduction Activity of Co/N-Doped Carbon Materials K. Iwase, K. Ebner, J.S. Diercks, V.A. Saveleva, S. Ünsal, F. Krumeich, T. Harada, I. Honma, S. Nakanishi, K. Kamiya, T.J. Schmidt, J. Herranz
    ACS Applied Materials / Interfaces 13(13), 15122-15131 (2021)
    DOI: 10.1021/acsami.0c21920

Oxygen evolution reaction activist and underlying mechanism of perovskite electrocatalysts at different pH B.J. Kim, E. Fabbri, M. Borlaf, D.F. Abbott, I.E. Castelli, M. Nachtegaal, T. Graule, T.J. SchmidtMater. Adv. 2, 445-455 (2021)DOI: 10.1039/D0MA00661K

  • Tuning the Co Oxidation State in Ba0.5Sr0.5Co0.8Fe0.2O3-d by Flame Spray Synthesis Towards High Oxygen Evolution Reaction Activity D. Aegerter, M. Borlaf, E. Fabbri, A.H. Clark, M. Nachtegaal, T. Graule, T.J. Schmidt
    Catalysts 10, 984 (2020)
    DOI: 10.3390/catal10090984
  • Co-Electrolysis of CO2 and H2O: from Electrode Reactions to Cell Level Developement J. Herranz, A. Patru, E. Fabbri, T.J. Schmidt
    Current Opinion in Electrochemistry 23, 89-95 (2020)
    DOI: 10.1016/j.coelec.2020.05.004
  • Surface segregation acts as surface engineering for the oxygen evolution reaction on perovskite oxides in alkaline media A. Boucly, E. Fabbri, L. Artiglia, X. Cheng, D. Pergolesi, M. Ammann, T.J. Schmidt
    Chemistry of Materials 32(12), 5256-5263 (2020)
    DOI: 10.1021/acsami.9b1322
  • Design and synthesis of Ir/Pt Pyrochlore catalysts for the oxygen evolution reaction based on their bulk thermodynamic propertiese in an automotive PEMFC system D.F. Abbott, R.K. Pittkowski, K. Macounova, R. Nebel, E. Marelli, E. Fabbri, I. E. Castelli, P. Krtil, T.J. Schmidt
    ACS Applied Materials and Interfaces 11(41), 37748-37760 (2019)
    DOI: 10.1021/acsami.9b13220
  • On the oxidation state of Cu2O upon CO2 reduction: An XPS Study A.A. Permyakova, J. Herranz, M. El Kazzi, J.S. Diercks, L.R. Mangani, M. Horisberger, A. Patru, T.J. Schmidt
    ChemPhysChem 20(22), 3120-3127 (2019)
    DOI: 10.1002/cphc.201900468 
  • Co/Fe Oxyhydroxides supported on perovskite oxides as oxygen evolution reaction catalyst systems X. Cheng, B.J. Kim, E. Fabbri, T.J. Schmidt
    ACS Applied MAterials and Interfaces 11(38), 34787-34795 (2019)
    DOI: 10.1021/acsami.9b04456
  • Influence of operating conditions on poermeation of CO2 through the membrane in an automotive PEMFC system S. Erbach, B. Pribyl, M. Klages, L. Spitthoff, K. Borah, S. Epple, L. Gubler, A. Patru, M. Heinen, T.J. Schmidt
    international Journal of Hydrogen Energy 25(44), 12760-12771 (2019)
    DOI: 10.1016/j.ijhydene.2018.10.033OG-5423
  • Design principles of bipolar electrochemical co-electrolysis cells for efficient reduction of carbon dioxide from gas phase at low temperature A. Patru, T. Binninger, B. Pribyl, T.J. Schmidt
    J. Electrochem. Soc. 166(2) F34-F43 (2019)
    DOI: 10.1149/2.1221816jesOG-5423
    • Fe-doping in double perovskite PrBaCo2(1-x)Fe2xO6-δ: insights into structural and electronic effects to enhance oxygen evolution catalyst stability B.-J. Kim, E. Fabbri, I.E. Castelli, M. Borlaf, T. Graule, M. Nachtegaal, T.J. Schmidt
      Catalysts 9(3), 263 (2019)
      DOI: 10.3390/catal9030263OG-5423
    • Design principles of bipolar electrochemical co-electrolysis cells for efficient reduction of carbon dioxide from gas phase at low temperature A. Patru, T. Binninger, B. Pribyl, T.J. Schmidt
      J. Electrochem. Soc. 166(2) F34-F43 (2019)
      DOI: 10.1149/2.1221816jesOG-5423
    • Functional Role of Fe-Doping in Co-Based Perovskite Oxide Catalysts for Oxygen Evolution Reaction B.-J. Kim, E. Fabbri, D.F. Abbott, X. Cheng, A.H. Clark, M. Nachtegaal, M. Borlaf, I.E. Castelli, T. Graule, T.J. Schmidt
      J. Am. Chem. Soc. 141(13), 5231-5240 (2019)
      DOI: 10.1021/jacs.8b12101OG-5423
    • Fe-​Based O2-​Reduction Catalysts Synthesized Using Na2CO3 as a Pore-​Inducing Agent K. Ebner, J. Herranz, V.A. Saveleva, B.-J. Kim, S. Henning, M. Demicheli, F. Krumeich, M. Nachtegaal, T.J. Schmidt
      ACS Appl. Energy Mater. 2(2), 1469-1479 (2019)
      DOI: 10.1021/acsaem.8b02036OG-5423
    • Multivariate calibration method for mass spectrometry of interfering gases such as mixtures of CO, N2, and CO2 T. Binninger, B. Pribyl, A. Pătru, P. Ruettimann, S. Bjelić, T.J. Schmidt
      J. Mass Spectrom. 53, 1214-1221 (2018)
      DOI: 10.1002/jms.4299OG-5423
    • Operando X-ray absorption investigations into the role of Fe in the electrochemical stability and oxygen evolution activity of Ni1−xFexOy nanoparticles D.F. Abbott, E. Fabbri, M. Borlaf, F. Bozza, R. Schaublin, M. Nachtegaal, T. Graule, T.J. Schmidt
      J. Mater. Chem. A 6, 24534-24549 (2018)
      DOI: 10.1039/C8TA09336AOG-5423
    • Oxygen evolution reaction - The enigma in water electrolysis E. Fabbri, T.J. Schmidt
      ACS Catal. 8, 9765-9774 (2018)
      DOI: 10.1021/acscatal.8b02712OG-5423
    • Highly active nanoperovskite catalysts for oxygen evolution reaction: Insights into activity and stability of Ba0.5Sr0.5Co0.8Fe0.2O2+δ and PrBaCo2O5+δ B-J. Kim, X. Cheng, D.F. Abbott, E. Fabbri, F. Bozza, T. Graule, I.E. Castelli, L. Wiles, N. Danilovic, K.E. Ayers, N. Marzari, T.J. Schmidt
      Adv. Funct. Mater. 1804355 (2018)
      DOI: 10.1002/adfm.201804355OG-5423
    • Polybenzimidazole fuel cell technology: Theory, performance, and applications A.T. Pingitore, M. Molleo, T.J. Schmidt, B.C. Benicewicz
      Encyclopedia of Sustainability Science and Technology, Springer New York, 1-38 (2018)
      DOI: 10.1007/978-1-4939-2493-6_143-3OG-5423
    • Tomographic analysis and modeling of polymer electrolyte fuel cell unsupported catalyst layers H. Ishikawa, S. Henning, J. Herranz, A. Eychmüller, M. Uchida, T.J. Schmidt
      J. Eletrochem. Soc. 165 (2), F7-F16 (2018)
      DOI: 10.1149/2.0371802jesOG-5423
    • Influence of Carbon Material Properties on Activity and Stability of the Negative Electrode in Vanadium Redox Flow Batteries: A Model Electrode Study S.M. Taylor, A. Patru, D. Perego, E. Fabbri, T.J. Schmidt
      ACS Appl. Energy Mater. 1, 1166-1174 (2018)
      DOI: 10.1021/acsaem.7b00273OG-5423
    • Impact of Support Physicochemical Properties on the CO Oxidation and the Oxygen Reduction Reaction Activity of Pt​/SnO2 Electrocatalysts A. Rabis, T. Binninger, E. Fabbri, T.J. Schmidt
      J. Phys. Chem. C 122, 4739-4746 (2018)
      DOI: 10.1021/acs.jpcc.7b09976OG-5423
    • Unsupported Pt3Ni Aerogels as Corrosion Resistant PEFC Anode Catalysts under Gross Fuel Starvation Conditions S. Henning, R. Shimizu, J. Herranz, L. Kuhn, A. Eychmuller, M. Uchida, K. Kakinuma, T.J. Schmidt
      J. Electrochem. Soc. 165, F3001-F3006 (2018)
      DOI: 10.1149/2.0531802jesOG-5423
    • Combining SAXS and XAS to study the operando degradation of carbon-​supported Pt-​nanoparticle fuel cell catalysts M. Povia, J. Herranz, T. Binninger, M. Nachtegaal, A. Diaz, J. Kohlbrecher, D.F. Abbott, B-J. Kim, T.J. Schmidt
      ACS Catal. 8, 7000-7015 (2018)
      DOI: 10.1021/acscatal.8b01321OG-5423
    • Operando X-ray absorption spectroscopy: A powerful tool toward water splitting catalyst development E. Fabbri, D.F. Abbott, M. Nachtegaal, T.J. Schmidt
      Current Opinion in Electrochemistry 5, 20-26 (2017)
      DOI: 10.1016/j.coelec.2017.08.009OG-5423
    • Nanostructuring noble metals as unsupported electrocatalysts for polymer electrolyte fuel cells B. Cai, S. Henning, J. Herranz, T.J. Schmidt, A. Eychmüller
      Adv. Energy Mater. 7, 1700548 (2017)
      DOI: 10.1002/aenm.201700548OG-5423
    • Capacitive electronic metal-support interactions: Outer surface charging of supported catalyst particles T. Binninger, T.J. Schmidt, D. Kramer
      Phys. Rev. B 96 (16), 165405 (2017)
      DOI: 10.1103/PhysRevB.96.165405OG-5423
    • Boosting Pt oxygen reduction reaction activity by tuning the tin oxide support E. Fabbri, A. Rabis, Y. Chino, M. Uchida, T.J. Schmidt
      Electrochem. Commun. 83, 90-95 (2017)
      DOI: 10.1016/j.elecom.2017.09.006OG-5423
    • Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting E. Fabbri, M. Nachtegaal, T. Binninger, X. Cheng, B.-J. Kim, J. Durst, F. Bozza, T. Graule, R. Schäublin, L. Wiles, M. Pertoso, N. Danilovic, K.E. Ayers, T.J. Schmidt
      Nat. Mater. 16 (9), 925-931 (2017)
      DOI: 10.1038/nmat4938OG-5423
    • Unsupported Pt-Ni aerogels with enhanced high current performance and durability in fuel cell cathodes S. Henning, H. Ishikawa, L. Kühn, J. Herranz, E. Müller, A. Eychmüller, T.J. Schmidt
      Angew. Chem. Int. Ed. 56, 10707-10710 (2017)
      DOI: 10.1002/anie.201704253OG-5423
    • Durability of unsupported Pt-Ni aerogels in PEFC cathodes S. Henning, J. Herranz, H. Ishikawa, B.J. Kim, D. Abbott, L. Kühn, A. Eychmüller, T.J. Schmidt
      J. Electrochem. Soc. 164 (12), F1136-F1141 (2017)
      DOI: 10.1149/2.0131712jesOG-5423
    • Numerical partitioning model for the Koutecký-Levich analysis of electrochemical flow cells with a combined channel/wall-jet geometry S.A. Tschupp, S.E. Temmel, N. Poyatos Salguero, J. Herranz, T.J. Schmidt
      J. Electrochem. Soc. 164 (11), E3448-E3456 (2017)
      DOI: 10.1149/2.0441711jesOG-5423
    • State-of-the-art nanofabrication in catalysis K. Waiz, S.A. Tschupp, J. Herranz, T.J. Schmidt, Y. Ekinci, J.A. van Bokhoven
      Chimia 71 (4), 160-169 (2017)
      DOI: 10.2533/chimia.2017.160OG-5423
    • Highly active and stable iridium pyrochlores for oxygen evolution reaction D. Lebedev, M. Povia, K. Waltar, P.M. Abdala, I.E. Castelli, E. Fabbri, M.V. Blanco, A. Fedorov, C. Coperet, N. Marzari, T.J. Schmidt
      Chem. Mater. 29 (12), 5182-5191 (2017)
      DOI: 10.1021/acs.chemmater.7b00766OG-5423
    • Effect of ball milling on the electrocatalytic activity of Ba0.5Sr0.5Co0.8Fe0.2O3 towards the oxygen evolution reaction X. Cheng, E. Fabbri, B-J. Kim, M. Nachtegaal, T.J. Schmidt
      J. Mater. Chem. A 5, 13130-13137 (2017)
      DOI: 10.1039/c7ta00794aOG-5423
    • Effect of acid washing on the oxygen reduction reaction activity of Pt-​Cu aerogel catalysts S. Henning, L. Kuhn, J. Herranz, M. Nachtegaal, R. Hubner, M. Werheid, A. Eychmuller, T.J. Schmidt
      Electrochim. Acta 233, 210-217 (2017)
      DOI: 10.1016/j.electacta.2017.03.019OG-5423
    • Unraveling thermodynamics, stability, and oxygen evolution activity of strontium ruthenium perovskite oxide B.-J. Kim, D.F. Abbott, X. Cheng, E. Fabbri, M. Nachtegaal, F. Bozza, I.E. Castelli, D. Lebedev, R. Schäublin, C. Copéret, T. Graule, N. Marzari, T.J. Schmidt
      ACS Catal. 7 (5), 3245-3256 (2017)
      DOI: 10.1021/acscatal.6b03171OG-5423
    • Stabilization of Pt nanoparticles due to electrochemical transistor switching of oxide support conductivity T. Binninger, R. Mohamed, A. Patru, K. Waltar, E. Gericke, X. Tuaev, E. Fabbri, P. Levecque, A. Hoell, T.J. Schmidt
      Chem. Mater. 29 (7), 2831-2843 (2017)
      DOI: 10.1021/acs.chemmater.6b04851OG-5423
    • Silicone Nanofilament-Supported Mixed Nickel-Metal Oxides for AlkalineWater Electrolysis D.F. Abbott, M. Meier, G.R. Meseck, E. Fabbri, S. Seeger, T.J. Schmidt
      J. Electrochem. Soc. 164, F203-F208 (2017)
      DOI: 10.1149/2.0201704jesOG-5423
    • IrO2-​TiO2: a High-​Surface Area, Active and Stable Electrocatalyst for Oxygen Evolution Reaction E. Oakton, D. Lebedev, M. Povia, D.F. Abbott, E. Fabbri, A. Fedorov, M. Nachtegaal, C. Coperet, T.J. Schmidt
      ACS Catal. 7, 2346-2352 (2017)
      DOI: 10.1021/acscatal.6b03246OG-5423
    • Structural analysis and electrochemical properties of bimetallic palladium–platinum aerogels prepared by a two-step gelation process M. Oezaslan , A.-K. Herrmann, M. Werheid, A.I. Frenkel, M. Nachtegaal, C. Dosche, C. Laugier Bonnaud, H.C. Yilmaz, L. Kühn, E. Rhiel, N. Gaponik, A. Eychmüller, T.J. Schmidt
      ChemCatChem 9, 798-808 (2017)
      DOI: 10.1002/cctc.201600667OG-5423
    • Influence of surface oxygen groups on V(II) oxidation reaction kinetics S.M. Taylor, A. Patru, E. Fabbri, T.J. Schmidt
      Electrochem. Commun. 75, 13-16 (2017)
      DOI: 10.1016/j.elecom.2016.12.003OG-5423
    • Interfacial effects on the catalysis of the hydrogen evolution, oxygen evolution and CO2-reduction reactions for (co-)electrolyzer development J. Herranz, J. Durst, E. Fabbri, A. Patru, X. Cheng, A.A. Permyakova, T.J. Schmidt
      Nano Energy 29, 4-28 (2016)
      DOI: 10.1016/j.nanoen.2016.01.027OG-5423
    • Investigating the role of strain toward the oxygen reduction activity on model thin film Pt catalysts S.E. Temmel, E. Fabbri, D. Pergolesi, T. Lippert, T.J. Schmidt
      ACS Catalysis 6, 7566–7576 (2016)
      DOI: 10.1021/acscatal.6b01836OG-5423
    • Alloying behaviour of self-assembled noble metal nanoparticles L. Kühn, A.-K. Herrmann, B. Rutkowski, M. Oezaslan, M. Nachtegaal, M. Klose, L. Giebeler, N. Gaponik, J. Eckert, T.J. Schmidt, A. Czyrska-Filemonowicz, A. Eychmüller
      Chem. Eur. J. 22 (38), 13446-13450 (2016)
      DOI: 10.1002/chem.201602487OG-5423
    • Iridium Oxide for the Oxygen Evolution Reaction: Correlation between Particle Size, Morphology, and the Surface Hydroxo Layer from Operando XAS D.F. Abbott, D. Lebedev, K. Waltar, M. Povia, M. Nachtegaal, E. Fabbri, C. Copéret, T.J. Schmidt
      Chem. Mater. 28 (18), 6591-6604 (2016)
      DOI: 10.1021/acs.chemmater.6b02625OG-5423
    • Electrochemical flow-cell Setup for in situ X-ray investigations: : II. Cell for SAXS on a Multi-Purpose Laboratory Diffractometer J. Tillier, T. Binninger, M. Garganourakis, A. Patru, E. Fabbri, T.J. Schmidt, O. Sereda
      J. Electrochem. Soc. 163 (10), H913-H920 (2016)
      DOI: 10.1149/2.0211610jesOG-5423
    • Electrochemical flow-cell Setup for in situ X-ray investigations: I. Cell for SAXS and XAS at Synchrotron Facilities T. Binninger, E. Fabbri, A. Patru, M. Garganourakis, J. Han, D.F. Abbott, O. Sereda, R. Kötz, A. Menzel, M. Nachtegaal, T.J. Schmidt
      J. Electrochem. Soc. 163 (10), H906-H912 (2016)
      DOI: 10.1149/2.0201610jesOG-5423
    • Tuning the surface electrochemistry by strained epitaxial Pt thin film model electrodes prepared by pulsed laser deposition S.E. Temmel, E. Fabbri, D. Pergolesi, T. Lippert, T.J. Schmidt
      Adv. Mater. Interfaces 1600222 (2016)
      DOI: 10.1002/admi.201600222OG-5423
    • Homogeneity and elemental distribution in self-assembled bimetallic Pd-Pt aerogels prepared by a spontaneous one-step gelation process M. Oezaslan, W. Liu, M. Nachtegaal, A.I. Frenkel, B. Rutkowski, M. Werheid, A.-K. Herrmann, C. Laugier-Bonnaud, H.-C. Yilmaz, N. Gaponik, A. Czyrska-Filemonowicz, A. Eychmüller, T.J. Schmidt
      Phys. Chem. Chem. Phys. 18, 20640-20650 (2016)
      DOI: 10.1039/C6CP03527BOG-5423
    • Pt-Ni aerogels as unsupported electrocatalysts for the oxygen reduction reaction S. Henning, L. Kühn, J. Herranz, J. Durst, T. Binninger, M. Nachtegaal, M. Werheid, W. Liu, M. Adam, S. Kaskel, A. Eychmüller, T.J. Schmidt
      J. Electrochem. Soc. 163 (9), F998-F1003 (2016)
      DOI: 10.1149/2.0251609jesOG-5423
    • The effect of platinum loading and surface morphology on oxygen reduction activity S. Taylor, E. Fabbri, P. Levecque, T.J. Schmidt, O. Conrad
      Electrocatalysis 7 (4), 287–296 (2016)
      DOI: 10.1007/s12678-016-0304-3OG-5423
    • Interfacial effects on the catalysis of the hydrogen evolution, oxygen evolution and CO2-reduction reactions for (co-)electrolyzer development J. Herranz, J. Durst, E. Fabbri, A. Patru, X. Cheng, A.A. Permyakova, T.J. Schmidt
      Nano Energy (2016)
      DOI: 10.1016/j.nanoen.2016.01.027OG-5423
    • A simple one-pot Adams method route to conductive high surface area IrO2–TiO2 E. Oakton, D. Lebedev, A. Fedorov, F. Krumeich, J. Tillier, O. Sereda, T.J. Schmidt, Ch. Copéret
      New J. Chem. 40, 1834-1838 (2016)
      DOI: 10.1039/C5NJ02400EOG-5423
    • A highly flexible electrochemical flow cell designed for the use of model electrode materials on non-conventional substrates S.E. Temmel, S.A. Tschupp, T.J. Schmidt
      Rev. Sci. Instrum. 87, 045115 (2016)
      DOI: 10.1063/1.4947459OG-5423
    • Pt/IrO2-TiO2 cathode catalyst for low temperature polymer electrolyte fuel cell - Application in MEAs, performance and stability issues A. Patru, A. Rabis, S.E. Temmel, R. Kötz, T.J. Schmidt
      Catal. Today 262, 161-169 (2016)
      DOI: 10.1016/j.cattod.2015.09.009OG-5423
    • Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts T. Binninger, R. Mohamed, K. Waltar, E. Fabbri, P. Levecque, R. Kötz, T.J. Schmidt
      Sci. Rep. 5, 12167 (2015)
      DOI: 10.1038/ srep12167OG-5423
    • High-resolution and large-area nanoparticle arrays using EUV interference lithography K. Waiz, S.A. Tschupp, M. Oezaslan, T.J. Schmidt, J. Gobrecht, J.A. van Bokhoven, Y. Ekinci
      Nanoscale, 7, 7386-7393 (2015)
      DOI: 10.1039/c5nr00565eOG-5423
    • Electrocatalysis of perovskites: The influence of carbon on the oxygen evolution activity R. Mohamed, X. Cheng, E. Fabbri, P. Levecque, R. Kötz, O. Conrad, T.J. Schmidt
      J. Electrochem. Soc. 162, 6, F579-F586 (2015)
      DOI: 10.1149/2.0861506jesOG-5423
    • Particle-Support interferences in small-angle x-ray scattering from supported-catalyst materials T. Binninger, M. Garganourakis, J. Han, A. Patru, E. Fabbri, O. Sereda, R. Kötz, A. Menzel, T.J. Schmidt
      Phys. Rev. Applied 3, 024012 (2015)
      DOI: 10.1103/PhysRevApplied.3.024012OG-5423
    • Noble metal aerogels-synthesis, characterization, and application as electrocatalysts W. Liu, A.K. Herrmann, N.C. Bigall, P. Rodriguez, D. Wen, M. Oezaslan, T.J. Schmidt, N. Gaponik, A. Eychmüller
      Acc. Chem. Res. 48, 154-162 (2015)
      DOI: 10.1021/ar500237cOG-5423
    • Methyl phosphate formation as a major degradation mode of direct methanol fuel cells with phosphoric acid based electrolytes D. Aili, A. Vasiliev, J.O. Jensen, T.J. Schmidt, Q. Li
      J. Power Sources 279, 517-521 (2015)
      DOI: 10.1016/j.jpowsour.2015.01.010OG-5423
    • Silicone Nanofilament Supported Nickel Oxide: A New Concept for Oxygen Evolution Catalysts in Water Electrolyzers G.R. Meseck, E. Fabbri, T.J. Schmidt, S. Seeger
      Adv. Mater. Interfaces 2, 1500216/1-1500216/5 (2015)
      DOI: 10.1002/admi.201500216OG-5423
    • An electrochemical in situ study of freezing and thawing of ionic liquids in carbon nanopores D. Weingarth, R. Drumm, A. Foelske-Schmitz, R. Kötz, V. Presser
      Phys. Chem. Chem. Phys. 16, 21219-21224 (2014)
      DOI: 10.1039/c4cp02727bOG-5423
    • Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction E. Fabbri, A. Habereder, K. Waltar, R. Kötz, T.J. Schmidt
      Catal. Sci. Technol. 4, 3800-3821 (2014)
      DOI: 10.1039/c4cy00669kOG-5423
    • Catalyzed SnO2 thin films: theoretical and experimental insights into fabrication and electrocatalytic properties A. Rabis, D. Kramer, E. Fabbri, M. Worsdale, R. Kötz, T.J. Schmidt
      J. Phys. Chem. C 118, 11292-11302 (2014)
      DOI: 10.1021/jp4120139OG-5423
    • Carbon additives for electrical double layer capacitor electrodes D. Weingarth, D. Cericola, F.C.F. Mornaghini, T. Hucke, R. Kötz
      J. Power Sources 266, 475–480 (2014)
      DOI: 10.1016/j.jpowsour.2014.05.065OG-5423
    • Advanced cathode materials for polymer electrolyte fuel cells based on Pt/metal oxides: From model electrodes to catalyst systems E. Fabbri, A. Patru, A. Rabis, R. Kötz, T.J. Schmidt
      Chimia 68, 217–220 (2014)
      DOI: 10.2533/chimia.2014.217OG-5423
    • In-situ XRD and dilatometry investigation of the formation of pillared graphene via electrochemical activation of partially reduced graphite oxide M.M. Hantel, R. Nesper, A. Wokaun, R. Kötz
      Electrochim. Acta 134, 459-470 (2014)
      DOI: 10.1016/j.electacta.2014.04.063OG-5423
    • Composite electrode boosts the activity of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite and carbon toward oxygen reduction in alkaline media E. Fabbri, R. Mohamed, P. Levecque, O. Conrad, R. Kötz, T.J. Schmidt
      ACS Catal. 4 (4), 1061–1070 (2014)
      DOI: 10.1021/cs400903kOG-5423
    • Pt nanoparticles supported on Sb-doped SnO2 porous structures: developments and issues E. Fabbri, A. Rabis, R. Kötz, T.J. Schmidt
      Phys. Chem. Chem. Phys. 16, 13672-13681 (2014)
      DOI: 10.1039/c4cp00238eOG-5423
    • The effect of platinum nanoparticle distribution on oxygen electroreduction activity and selectivity E. Fabbri, S. Taylor, A. Rabis, P. Levecque, O. Conrad, R. Kötz, T.J. Schmidt
      ChemCatChem 6 (5), 1410–1418 (2014)
      DOI: 10.1002/cctc.201300987OG-5423
    • Determination of the electrochemically active surface area of metal-oxide Supported Platinum Catalyst T. Binninger, E. Fabbri, R. Kötz, T. J. Schmidt
      J. Electrochem. Soc. 161 (3), H121-H128 (2014)
      DOI: 10.1149/2.055403jesOG-5423
    • Ba0.5Sr0.5Co0.8Fe0.2O3-d Perovskite Activity towards the Oxygen Reduction Reaction in Alkaline Media E. Fabbri, R. Mohamed, P. Levecque, O. Conrad, R. Kötz, T.J. Schmidt
      ChemElectroChem 1 (2), 338-342 (2014)
      DOI: 10.1002/celc.201300157OG-5423
    • Parameters determining dimensional changes of porous carbons during capacitive charging M.M. Hantel, D. Weingarth, R. Kötz
      Carbon 69, 275-286 (2014)
      DOI: 10.1016/j.carbon.2013.12.026OG-5423

Sidebar

Contact

Group Head
Prof. Thomas J. Schmidt
Paul Scherrer Institut
CH-5232 Villigen PSI
Switzerland

Phone: +41 56 310 57 65
Fax: +41 56 310 44 15
E-mail: thomasjustus.schmidt@psi.ch


Secretary
Cordelia Gloor
Phone: +41 56 310 29 19
E-mail: cordelia.gloor@psi.ch
 
top

Footer

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Switzerland

Telephone: +41 56 310 21 11
Telefax: +41 56 310 21 99

How to find us
Contact

Visitor Centre psi forum
School Lab iLab (in German)
Center for Proton Therapy
PSI Education Centre
PSI Guest House
PSI Gastronomie (in German)

 

Service & Support

  • Phone Book
  • User Office
  • Accelerator Status
  • PSI Publications
  • Suppliers
  • E-Billing
  • Computing
  • Safety (in German)

Career

  • Working at PSI
  • Job Opportunities
  • Training and further education
  • Vocational Training (in German)
  • PSI Education Center

For the media

  • PSI in brief
  • Facts and Figures
  • Media corner
  • Media Releases
  • Social Media Newsroom

Follow us: Twitter (in English) LinkedIn Youtube Issuu RSS

Footer legal

  • Imprint
  • Terms and Conditions
  • Editors' login