
Electrocatalysis and Interfaces
Project Description
The Electrocatalysis and Interfaces Group was established in 2012 combining the electrocatalysis activites of the former Fuel Cell Group and the Interface analytical activities of the former Interface and Capacitor Group.
Electrocatalysis is the key topic for electrochemical energy conversion. In order to optimize rate, selectivity, energy and stability of a certain electrochemical reaction - such as oxygen reduction, oxygen evolution, hydrogen oxidation, and CO2 reduction - proper catalysts have to be developed and optimized. The respective surface and interface analytical tools are essential for the understanding of the catalyst and are utilized in the group.
Therefore the activities of the group cover two focal points - Electrocatalysis and Interface analysis including Electrochemical capacitors.
Electrocatalysis - opens new routes towards more efficient fuel cells and other electrochemical processes e.g. CO2 reduction. The group's main topics are investigations of the effect and utilization of oxides as support for O2 reduction catalysts and the optimization of CO2 reduction catalysts. Catalysts for electrolysis and reversible fuel cells are also studied in our group.
Interfaces - Surface analysis is essential for the understanding and optimization of catalytic and electrochemical interfaces and provides information about processes and electronic and molecular properties on a microscopic scale. The main topics at present are catalysis of nano particles and electrocatalysis. We also developed in situ UHV electrochemical cells for in situ studies of the electrolyte|electrode interface, in particular the ionic liquid | electrode interface.
In addition we provide support for customers within and outside PSI.
Research Team
- Thomas J. Schmidt, head
- Dino Aegerter
- Casey Beall
- Anthony Boucly (LEC+LUC)
- Piyush Chauhan
- Justus Diercks
- Nataša Diklic
- Emiliana Fabbri
- Meriem Fikry
- Adrian Heinritz
- Juan Herranz
- Elena Marelli (LEC+LMX)
- Bernhard Pribyl-Kranewitter
- Seçil Ünsal Dayanık
Former Group Members
Alexandra Patru | 2013-2020 | Sensirion |
Kathrin Ebner | 2017-2020 | Bauhaus Luftfahrt |
Viktoriia Saveleva | 2018-2020 | ESRF - European Synchrotron |
Mauro Povia | 2015 - 2019 | Ecxelsus Structural Solutions |
Daniel Abbott | 2015 - 2019 | ETH Zurich |
Baejung (Joseph) Kim | 2015 - 2019 | Hyundai Mobis |
Daniele Perego | 2017 - 2019 | |
Anastasia A. Permyakova | 2014 - 2018 | ABB |
Xi Cheng | 2014 - 2017 | PSI - Thin films and interfaces |
Susan Taylor | 2014 - 2017 | RD Graphene |
Tobias Binninger | 2012 - 2017 | NCCR Marvel |
Simon Tschupp | 2013 - 2017 | Axetris |
Sandra Temmel | 2012 - 2016 | Elring Klinger |
Yohan Paratcha | 2014 - 2016 | |
Annett Rabis | 2011 - 2015 | |
Julien Durst | 2014 - 2015 | Air Liquide |
Kay Waltar | 2013 - 2015 | ETH Zürich |
Anja Habereder | 2013 - 2014 | |
Mehtap Özaslan | 2012 - 2014 | Carl von Ossietzky Universität Oldenburg |
Rüdiger Kötz | 1989 - 2014 | Elsevier |
Moritz Hantel | 2010 - 2013 | SABIC |
Daniel Weingarth | 2010 - 2013 | INM Leibniz Institute for New Materials |
Jorge Ferreira de Araújo | 2012 - 2013 | Technische Universität Berlin |
Annette Foelske-Schmitz | 2004 - 2013 | Technische Universität Wien |
Paramaconi Rodriguez | 2011 - 2012 | University of Birmingham |
Yuri Sasaki | 2010 - 2011 | Toyota Central R&D Laboratories, Inc. |
Anastasia Peitz | 2008 - 2011 | ABB Schweiz AG, Micafil, Klingnau |
Dario Cericola | 2008 - 2011 | TIMCAL Ltd, Bodio |
Patrick Ruch | 2005 - 2009 | IBM Research Lab. Zürich |
Jörg Wambach | 2007 - 2009 | LBK (PSI) |
François Loviat | 2007 - 2008 | Sulzer Ltd |
Jean-Claude Sauter | 2001 - 2007 | RUAG Aerospace |
Matthias Hahn | 1999 - 2007 | EL-Cell GmbH |
Olivier Barbieri | 2003 - 2006 | Spare Parts Operations Manager at Cartier |
Flavio Campana | 2001 - 2005 | Cendres+Métaux SA |
Carolin Stoessel-Sittig | 2002 - 2004 | |
Bernhard Schnyder | 1991 - 2004 | Micro Crystal, Div. of ETA SA |
Martin Baertschi | 1999 - 2001 | |
Martin Baertsch | 1995 - 2001 | Swissmedic |
Dario Aliatta | 1997 - 2000 | Rudolph Technologies |
Artur Braun | 1996 - 1999 | EMPA |
Pascal Haering | 1994 - 1998 | Renata SA |
Melanie Sullivan | 1992 - 1996 | |
Rainer Michaelis | 1993 - 1995 | Praxis für Musik-/Klangtherapie |
Cesar Barbero | 1989 - 1994 | Universidad Nacional de Rio Cuarto |
Maria C. Miras | 1989 - 1994 | Universidad Nacional de Rio Cuarto |
Selected Publications (2020-2014)
For previous publications see Publications Annual
- Tuning the Co Oxidation State in Ba0.5Sr0.5Co0.8Fe0.2O3-d by Flame Spray Synthesis Towards High Oxygen Evolution Reaction Activity
Catalysts 10, 984 (2020)DOI: 10.3390/catal10090984
- Co-Electrolysis of CO2 and H2O: from Electrode Reactions to Cell Level Developement
Current Opinion in Electrochemistry 23, 89-95 (2020)DOI: 10.1016/j.coelec.2020.05.004
- Surface segregation acts as surface engineering for the oxygen evolution reaction on perovskite oxides in alkaline media
Chemistry of Materials 32(12), 5256-5263 (2020)DOI: 10.1021/acsami.9b1322
- Design and synthesis of Ir/Pt Pyrochlore catalysts for the oxygen evolution reaction based on their bulk thermodynamic propertiese in an automotive PEMFC system
ACS Applied Materials and Interfaces 11(41), 37748-37760 (2019)DOI: 10.1021/acsami.9b13220
- On the oxidation state of Cu2O upon CO2 reduction: An XPS Study
ChemPhysChem 20(22), 3120-3127 (2019)DOI: 10.1002/cphc.201900468
- Co/Fe Oxyhydroxides supported on perovskite oxides as oxygen evolution reaction catalyst systems
ACS Applied MAterials and Interfaces 11(38), 34787-34795 (2019)DOI: 10.1021/acsami.9b04456
- Influence of operating conditions on poermeation of CO2 through the membrane in an automotive PEMFC system
international Journal of Hydrogen Energy 25(44), 12760-12771 (2019)DOI: 10.1016/j.ijhydene.2018.10.033
- Design principles of bipolar electrochemical co-electrolysis cells for efficient reduction of carbon dioxide from gas phase at low temperature
J. Electrochem. Soc. 166(2) F34-F43 (2019)DOI: 10.1149/2.1221816jes
- Fe-doping in double perovskite PrBaCo2(1-x)Fe2xO6-δ: insights into structural and electronic effects to enhance oxygen evolution catalyst stability
Catalysts 9(3), 263 (2019)DOI: 10.3390/catal9030263
- Design principles of bipolar electrochemical co-electrolysis cells for efficient reduction of carbon dioxide from gas phase at low temperature
J. Electrochem. Soc. 166(2) F34-F43 (2019)DOI: 10.1149/2.1221816jes
- Functional Role of Fe-Doping in Co-Based Perovskite Oxide Catalysts for Oxygen Evolution Reaction
J. Am. Chem. Soc. 141(13), 5231-5240 (2019)DOI: 10.1021/jacs.8b12101
- Fe-Based O2-Reduction Catalysts Synthesized Using Na2CO3 as a Pore-Inducing Agent
ACS Appl. Energy Mater. 2(2), 1469-1479 (2019)DOI: 10.1021/acsaem.8b02036
- Multivariate calibration method for mass spectrometry of interfering gases such as mixtures of CO, N2, and CO2
J. Mass Spectrom. 53, 1214-1221 (2018)DOI: 10.1002/jms.4299
- Operando X-ray absorption investigations into the role of Fe in the electrochemical stability and oxygen evolution activity of Ni1−xFexOy nanoparticles
J. Mater. Chem. A 6, 24534-24549 (2018)DOI: 10.1039/C8TA09336A
- Oxygen evolution reaction - The enigma in water electrolysis
ACS Catal. 8, 9765-9774 (2018)DOI: 10.1021/acscatal.8b02712
- Highly active nanoperovskite catalysts for oxygen evolution reaction: Insights into activity and stability of Ba0.5Sr0.5Co0.8Fe0.2O2+δ and PrBaCo2O5+δ
Adv. Funct. Mater. 1804355 (2018)DOI: 10.1002/adfm.201804355
- Polybenzimidazole fuel cell technology: Theory, performance, and applications
Encyclopedia of Sustainability Science and Technology, Springer New York, 1-38 (2018)DOI: 10.1007/978-1-4939-2493-6_143-3
- Tomographic analysis and modeling of polymer electrolyte fuel cell unsupported catalyst layers
J. Eletrochem. Soc. 165 (2), F7-F16 (2018)DOI: 10.1149/2.0371802jes
- Influence of Carbon Material Properties on Activity and Stability of the Negative Electrode in Vanadium Redox Flow Batteries: A Model Electrode Study
ACS Appl. Energy Mater. 1, 1166-1174 (2018)DOI: 10.1021/acsaem.7b00273
- Impact of Support Physicochemical Properties on the CO Oxidation and the Oxygen Reduction Reaction Activity of Pt/SnO2 Electrocatalysts
J. Phys. Chem. C 122, 4739-4746 (2018)DOI: 10.1021/acs.jpcc.7b09976
- Unsupported Pt3Ni Aerogels as Corrosion Resistant PEFC Anode Catalysts under Gross Fuel Starvation Conditions
J. Electrochem. Soc. 165, F3001-F3006 (2018)DOI: 10.1149/2.0531802jes
- Combining SAXS and XAS to study the operando degradation of carbon-supported Pt-nanoparticle fuel cell catalysts
ACS Catal. 8, 7000-7015 (2018)DOI: 10.1021/acscatal.8b01321
- Operando X-ray absorption spectroscopy: A powerful tool toward water splitting catalyst development
Current Opinion in Electrochemistry 5, 20-26 (2017)DOI: 10.1016/j.coelec.2017.08.009
- Nanostructuring noble metals as unsupported electrocatalysts for polymer electrolyte fuel cells
Adv. Energy Mater. 7, 1700548 (2017)DOI: 10.1002/aenm.201700548
- Capacitive electronic metal-support interactions: Outer surface charging of supported catalyst particles
Phys. Rev. B 96 (16), 165405 (2017)DOI: 10.1103/PhysRevB.96.165405
- Boosting Pt oxygen reduction reaction activity by tuning the tin oxide support
Electrochem. Commun. 83, 90-95 (2017)DOI: 10.1016/j.elecom.2017.09.006
- Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting
Nat. Mater. 16 (9), 925-931 (2017)DOI: 10.1038/nmat4938
- Unsupported Pt-Ni aerogels with enhanced high current performance and durability in fuel cell cathodes
Angew. Chem. Int. Ed. 56, 10707-10710 (2017)DOI: 10.1002/anie.201704253
- Durability of unsupported Pt-Ni aerogels in PEFC cathodes
J. Electrochem. Soc. 164 (12), F1136-F1141 (2017)DOI: 10.1149/2.0131712jes
- Numerical partitioning model for the Koutecký-Levich analysis of electrochemical flow cells with a combined channel/wall-jet geometry
J. Electrochem. Soc. 164 (11), E3448-E3456 (2017)DOI: 10.1149/2.0441711jes
- State-of-the-art nanofabrication in catalysis
Chimia 71 (4), 160-169 (2017)DOI: 10.2533/chimia.2017.160
- Highly active and stable iridium pyrochlores for oxygen evolution reaction
Chem. Mater. 29 (12), 5182-5191 (2017)DOI: 10.1021/acs.chemmater.7b00766
- Effect of ball milling on the electrocatalytic activity of Ba0.5Sr0.5Co0.8Fe0.2O3 towards the oxygen evolution reaction
J. Mater. Chem. A 5, 13130-13137 (2017)DOI: 10.1039/c7ta00794a
- Effect of acid washing on the oxygen reduction reaction activity of Pt-Cu aerogel catalysts
Electrochim. Acta 233, 210-217 (2017)DOI: 10.1016/j.electacta.2017.03.019
- Unraveling thermodynamics, stability, and oxygen evolution activity of strontium ruthenium perovskite oxide
ACS Catal. 7 (5), 3245-3256 (2017)DOI: 10.1021/acscatal.6b03171
- Stabilization of Pt nanoparticles due to electrochemical transistor switching of oxide support conductivity
Chem. Mater. 29 (7), 2831-2843 (2017)DOI: 10.1021/acs.chemmater.6b04851
- Silicone Nanofilament-Supported Mixed Nickel-Metal Oxides for AlkalineWater Electrolysis
J. Electrochem. Soc. 164, F203-F208 (2017)DOI: 10.1149/2.0201704jes
- IrO2-TiO2: a High-Surface Area, Active and Stable Electrocatalyst for Oxygen Evolution Reaction
ACS Catal. 7, 2346-2352 (2017)DOI: 10.1021/acscatal.6b03246
- Structural analysis and electrochemical properties of bimetallic palladium–platinum aerogels prepared by a two-step gelation process
ChemCatChem 9, 798-808 (2017)DOI: 10.1002/cctc.201600667
- Influence of surface oxygen groups on V(II) oxidation reaction kinetics
Electrochem. Commun. 75, 13-16 (2017)DOI: 10.1016/j.elecom.2016.12.003
- Interfacial effects on the catalysis of the hydrogen evolution, oxygen evolution and CO2-reduction reactions for (co-)electrolyzer development
Nano Energy 29, 4-28 (2016)DOI: 10.1016/j.nanoen.2016.01.027
- Investigating the role of strain toward the oxygen reduction activity on model thin film Pt catalysts
ACS Catalysis 6, 7566–7576 (2016)DOI: 10.1021/acscatal.6b01836
- Alloying behaviour of self-assembled noble metal nanoparticles
Chem. Eur. J. 22 (38), 13446-13450 (2016)DOI: 10.1002/chem.201602487
- Iridium Oxide for the Oxygen Evolution Reaction: Correlation between Particle Size, Morphology, and the Surface Hydroxo Layer from Operando XAS
Chem. Mater. 28 (18), 6591-6604 (2016)DOI: 10.1021/acs.chemmater.6b02625
- Electrochemical flow-cell Setup for in situ X-ray investigations: : II. Cell for SAXS on a Multi-Purpose Laboratory Diffractometer
J. Electrochem. Soc. 163 (10), H913-H920 (2016)DOI: 10.1149/2.0211610jes
- Electrochemical flow-cell Setup for in situ X-ray investigations: I. Cell for SAXS and XAS at Synchrotron Facilities
J. Electrochem. Soc. 163 (10), H906-H912 (2016)DOI: 10.1149/2.0201610jes
- Tuning the surface electrochemistry by strained epitaxial Pt thin film model electrodes prepared by pulsed laser deposition
Adv. Mater. Interfaces 1600222 (2016)DOI: 10.1002/admi.201600222
- Homogeneity and elemental distribution in self-assembled bimetallic Pd-Pt aerogels prepared by a spontaneous one-step gelation process
Phys. Chem. Chem. Phys. 18, 20640-20650 (2016)DOI: 10.1039/C6CP03527B
- Pt-Ni aerogels as unsupported electrocatalysts for the oxygen reduction reaction
J. Electrochem. Soc. 163 (9), F998-F1003 (2016)DOI: 10.1149/2.0251609jes
- The effect of platinum loading and surface morphology on oxygen reduction activity
Electrocatalysis 7 (4), 287–296 (2016)DOI: 10.1007/s12678-016-0304-3
- Interfacial effects on the catalysis of the hydrogen evolution, oxygen evolution and CO2-reduction reactions for (co-)electrolyzer development
Nano Energy (2016)DOI: 10.1016/j.nanoen.2016.01.027
- A simple one-pot Adams method route to conductive high surface area IrO2–TiO2
New J. Chem. 40, 1834-1838 (2016)DOI: 10.1039/C5NJ02400E
- A highly flexible electrochemical flow cell designed for the use of model electrode materials on non-conventional substrates
Rev. Sci. Instrum. 87, 045115 (2016)DOI: 10.1063/1.4947459
- Pt/IrO2-TiO2 cathode catalyst for low temperature polymer electrolyte fuel cell - Application in MEAs, performance and stability issues
Catal. Today 262, 161-169 (2016)DOI: 10.1016/j.cattod.2015.09.009
- Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts
Sci. Rep. 5, 12167 (2015)DOI: 10.1038/ srep12167
- High-resolution and large-area nanoparticle arrays using EUV interference lithography
Nanoscale, 7, 7386-7393 (2015)DOI: 10.1039/c5nr00565e
- Electrocatalysis of perovskites: The influence of carbon on the oxygen evolution activity
J. Electrochem. Soc. 162, 6, F579-F586 (2015)DOI: 10.1149/2.0861506jes
- Particle-Support interferences in small-angle x-ray scattering from supported-catalyst materials
Phys. Rev. Applied 3, 024012 (2015)DOI: 10.1103/PhysRevApplied.3.024012
- Noble metal aerogels-synthesis, characterization, and application as electrocatalysts
Acc. Chem. Res. 48, 154-162 (2015)DOI: 10.1021/ar500237c
- Methyl phosphate formation as a major degradation mode of direct methanol fuel cells with phosphoric acid based electrolytes
J. Power Sources 279, 517-521 (2015)DOI: 10.1016/j.jpowsour.2015.01.010
- Silicone Nanofilament Supported Nickel Oxide: A New Concept for Oxygen Evolution Catalysts in Water Electrolyzers
Adv. Mater. Interfaces 2, 1500216/1-1500216/5 (2015)DOI: 10.1002/admi.201500216
- An electrochemical in situ study of freezing and thawing of ionic liquids in carbon nanopores
Phys. Chem. Chem. Phys. 16, 21219-21224 (2014)DOI: 10.1039/c4cp02727b
- Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction
Catal. Sci. Technol. 4, 3800-3821 (2014)DOI: 10.1039/c4cy00669k
- Catalyzed SnO2 thin films: theoretical and experimental insights into fabrication and electrocatalytic properties
J. Phys. Chem. C 118, 11292-11302 (2014)DOI: 10.1021/jp4120139
- Carbon additives for electrical double layer capacitor electrodes
J. Power Sources 266, 475–480 (2014)DOI: 10.1016/j.jpowsour.2014.05.065
- Advanced cathode materials for polymer electrolyte fuel cells based on Pt/metal oxides: From model electrodes to catalyst systems
Chimia 68, 217–220 (2014)DOI: 10.2533/chimia.2014.217
- In-situ XRD and dilatometry investigation of the formation of pillared graphene via electrochemical activation of partially reduced graphite oxide
Electrochim. Acta 134, 459-470 (2014)DOI: 10.1016/j.electacta.2014.04.063
- Composite electrode boosts the activity of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite and carbon toward oxygen reduction in alkaline media
ACS Catal. 4 (4), 1061–1070 (2014)DOI: 10.1021/cs400903k
- Pt nanoparticles supported on Sb-doped SnO2 porous structures: developments and issues
Phys. Chem. Chem. Phys. 16, 13672-13681 (2014)DOI: 10.1039/c4cp00238e
- The effect of platinum nanoparticle distribution on oxygen electroreduction activity and selectivity
ChemCatChem 6 (5), 1410–1418 (2014)DOI: 10.1002/cctc.201300987
- Determination of the electrochemically active surface area of metal-oxide Supported Platinum Catalyst
J. Electrochem. Soc. 161 (3), H121-H128 (2014)DOI: 10.1149/2.055403jes
- Ba0.5Sr0.5Co0.8Fe0.2O3-d Perovskite Activity towards the Oxygen Reduction Reaction in Alkaline Media
ChemElectroChem 1 (2), 338-342 (2014)DOI: 10.1002/celc.201300157
- Parameters determining dimensional changes of porous carbons during capacitive charging
Carbon 69, 275-286 (2014)DOI: 10.1016/j.carbon.2013.12.026
- Fe-doping in double perovskite PrBaCo2(1-x)Fe2xO6-δ: insights into structural and electronic effects to enhance oxygen evolution catalyst stability