Dr. Lubna Dada



Paul Scherrer Institut
Forschungsstrasse 111
5232 Villigen PSI


I am an atmospheric scientist, expert in new particle formation from field observations and chamber measurements. I received my Masters degree in atmospheric chemistry in Beirut, Lebanon in 2014 and my PhD in atmospheric physics in Helsinki, Finland in 2019. I later moved to Switzerland for a postdoc position at EPFL, Sion, Switzerland in 2021. I am currently working as a scientist in the Atmosphere-Biosphere-Interactions group within LAC at PSI. 

Research Focus

At LAC, my focus has been on how natural emissions from vegetation affect aerosol particles, their formation, growth and contribution to clouds. For understanding these phenomena, I relied on long-term observations from multiple places around the world, including but not limited to, forests (Hyytiälä, Finland), remote locations (Central Arctic Ocean, Marambio in Antarctica and Mt. Everest in Nepal), Megacities (Beijing, China and New Delhi, India), as well as rural and urban locations in Switzerland, Lebanon, Hungary, Spain, Italy, Cyprus, Saudi Arabia, Jordan and so on. My latest publication focused on the contribution of agriculture to forming aerosol particles and hence cloud seeds in the atmosphere. 

At the same time, I designed and performed experiments simulating our atmosphere in a gigantic chamber (CLOUD) at the European nuclear research center (CERN) in Geneva, to understand the reactions between the naturally emitted organic vapours and oxidants on a molecular level and quantify their contribution to aerosol and cloud formation. The most recent experiments show how a group of molecules namely 'Sesquiterpenes' are capable of forming much more particles and hence cloud seeds than thought before. 

In addition, I am currently a volunteering scientific mentor within the Environment Academy initiative in Beirut, Lebanon. My role has been to empower communities in Lebanon most affected by environmental breakdown via bringing my scientific knowledge into play with the local communities in villages to improve their air quality via forestation. 

My next research step (2024 - 2027) is dedicated to quantify the primary biological particle emissions, be it pollen grains, plant debris, bacteria.. etc. in several locations in Europe. For tackling this research, I have been awarded an SNSF Ambizione grant, for my proposal entitled 'BioPSI: Biological Particles Sources and Impacts'. 

Find me

Twitter 'X'




  • Li D, Huang W, Wang D, Wang M, Thornton JA, Caudillo L, et al.
    Nitrate radicals suppress biogenic new particle formation from monoterpene oxidation
    Environmental Science and Technology. 2024; 58(3): 1601-1614. https://doi.org/10.1021/acs.est.3c07958
  • Marten R, Xiao M, Wang M, Kong W, He X-C, Stolzenburg D, et al.
    Assessing the importance of nitric acid and ammonia for particle growth in the polluted boundary layer
    Environmental Science: Atmospheres. 2024; 4(2): 265-274. https://doi.org/10.1039/D3EA00001J
  • Rörup B, He XC, Shen J, Baalbaki R, Dada L, Sipilä M, et al.
    Temperature, humidity, and ionisation effect of iodine oxoacid nucleation
    Environmental Science: Atmospheres. 2024. https://doi.org/10.1039/d4ea00013g
  • Boyer M, Aliaga D, Pernov JB, Angot H, Quéléver LLJ, Dada L, et al.
    A full year of aerosol size distribution data from the central Arctic under an extreme positive Arctic Oscillation: insights from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition
    Atmospheric Chemistry and Physics. 2023; 23(1): 389-415. https://doi.org/10.5194/acp-23-389-2023
  • Casquero-Vera JA, Pérez-Ramírez D, Lyamani H, Rejano F, Casans A, Titos G, et al.
    Impact of desert dust on new particle formation events and the cloud condensation nuclei budget in dust-influenced areas
    Atmospheric Chemistry and Physics. 2023; 23(24): 15795-15814. https://doi.org/10.5194/acp-23-15795-2023
  • Caudillo L, Surdu M, Lopez B, Wang M, Thoma M, Bräkling S, et al.
    An intercomparison study of four different techniques for measuring the chemical composition of nanoparticles
    Atmospheric Chemistry and Physics. 2023; 23(11): 6613-6631. https://doi.org/10.5194/acp-23-6613-2023
  • Dada L, Stolzenburg D, Simon M, Fischer L, Heinritzi M, Wang M, et al.
    Role of sesquiterpenes in biogenic new particle formation
    Science Advances. 2023; 9(36): eadi5297 (15 pp.). https://doi.org/10.1126/sciadv.adi5297
  • Dada L, Okuljar M, Shen J, Olin M, Wu Y, Heimsch L, et al.
    The synergistic role of sulfuric acid, ammonia and organics in particle formation over an agricultural land
    Environmental Science: Atmospheres. 2023; 3(8): 1195-1211. https://doi.org/10.1039/d3ea00065f
  • Finkenzeller H, Iyer S, He X-C, Simon M, Koenig TK, Lee CF, et al.
    The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source
    Nature Chemistry. 2023; 15: 129-135. https://doi.org/10.1038/s41557-022-01067-z
  • He XC, Simon M, Iyer S, Xie HB, Rörup B, Shen J, et al.
    Iodine oxoacids enhance nucleation of sulfuric acid particles in the atmosphere
    Science. 2023; 382(6676): 1308-1314. https://doi.org/10.1126/science.adh2526
  • Heutte B, Bergner N, Beck I, Angot H, Dada L, Quéléver LLJ, et al.
    Measurements of aerosol microphysical and chemical properties in the central Arctic atmosphere during MOSAiC
    Scientific Data. 2023; 10(1): 690 (16 pp.). https://doi.org/10.1038/s41597-023-02586-1
  • Kulmala M, Cai R, Ezhova E, Deng C, Stolzenburg D, Dada L, et al.
    Direct link between the characteristics of atmospheric new particle formation and Continental Biosphere-Atmosphere-Cloud-Climate (COBACC) feedback loop
    Boreal Environment Research. 2023; 28(1-6): 1-13.
  • Lampilahti A, Garmash O, Arshinov M, Davydov D, Belan B, Noe S, et al.
    New particle formation in boreal forests of Siberia, Finland and Estonia
    Boreal Environment Research. 2023; 28(1-6): 147-167.
  • Mishra S, Tripathi SN, Kanawade VP, Haslett SL, Dada L, Ciarelli G, et al.
    Rapid night-time nanoparticle growth in Delhi driven by biomass-burning emissions
    Nature Geoscience. 2023; 16(3): 224-230. https://doi.org/10.1038/s41561-023-01138-x
  • Nie W, Yan C, Yang L, Roldin P, Liu Y, Vogel AL, et al.
    NO at low concentration can enhance the formation of highly oxygenated biogenic molecules in the atmosphere
    Nature Communications. 2023; 14(1): 3347 (11 pp.). https://doi.org/10.1038/s41467-023-39066-4
  • Pfeifer J, Mahfouz NGA, Schulze BC, Mathot S, Stolzenburg D, Baalbaki R, et al.
    Measurement of the collision rate coefficients between atmospheric ions and multiply charged aerosol particles in the CERN CLOUD chamber
    Atmospheric Chemistry and Physics. 2023; 23(12): 6703-6718. https://doi.org/10.5194/acp-23-6703-2023
  • Surdu M, Lamkaddam H, Wang DS, Bell DM, Xiao M, Lee CP, et al.
    Molecular understanding of the enhancement in organic aerosol mass at high relative humidity
    Environmental Science and Technology. 2023; 57(6): 2297-2309. https://doi.org/10.1021/acs.est.2c04587
  • Beck LJ, Schobesberger S, Junninen H, Lampilahti J, Manninen A, Dada L, et al.
    Diurnal evolution of negative atmospheric ions above the boreal forest: from ground level to the free troposphere
    Atmospheric Chemistry and Physics. 2022; 22(13): 8547-8577. https://doi.org/10.5194/acp-22-8547-2022
  • Cai R, Yin R, Yan C, Yang D, Deng C, Dada L, et al.
    The missing base molecules in atmospheric acid-base nucleation
    National Science Review. 2022; 9(10): nwac137 (13 pp.). https://doi.org/10.1093/nsr/nwac137
  • Dada L, Angot H, Beck I, Baccarini A, Quéléver LLJ, Boyer M, et al.
    A central arctic extreme aerosol event triggered by a warm air-mass intrusion
    Nature Communications. 2022; 13(1): 5290 (15 pp.). https://doi.org/10.1038/s41467-022-32872-2
  • Du W, Cai J, Zheng F, Yan C, Zhou Y, Guo Y, et al.
    Influence of aerosol chemical composition on condensation sink efficiency and new particle formation in Beijing
    Environmental Science and Technology Letters. 2022; 9(5): 375-382. https://doi.org/10.1021/acs.estlett.2c00159
  • Guo Y, Yan C, Liu Y, Qiao X, Zheng F, Zhang Y, et al.
    Seasonal variation in oxygenated organic molecules in urban Beijing and their contribution to secondary organic aerosol
    Atmospheric Chemistry and Physics. 2022; 22(15): 10077-10097. https://doi.org/10.5194/acp-22-10077-2022
  • Hakala S, Vakkari V, Bianchi F, Dada L, Deng C, Dällenbach KR, et al.
    Observed coupling between air mass history, secondary growth of nucleation mode particles and aerosol pollution levels in Beijing
    Environmental Science: Atmospheres. 2022; 2(2): 146-164. https://doi.org/10.1039/d1ea00089f
  • Karlsson L, Baccarini A, Duplessis P, Baumgardner D, Brooks IM, Chang RY-W, et al.
    Physical and chemical properties of cloud droplet residuals and aerosol particles during the Arctic Ocean 2018 expedition
    Journal of Geophysical Research D: Atmospheres. 2022; 127(11): e2021JD036383 (20 pp.). https://doi.org/10.1029/2021JD036383
  • Kontkanen J, Stolzenburg D, Olenius T, Yan C, Dada L, Ahonen L, et al.
    What controls the observed size-dependency of the growth rates of sub-10 nm atmospheric particles?
    Environmental Science: Atmospheres. 2022; 2(3): 449-468. https://doi.org/10.1039/d1ea00103e
  • Kulmala M, Junninen H, Dada L, Salma I, Weidinger T, Thén W, et al.
    Quiet new particle formation in the atmosphere
    Frontiers in Environmental Science. 2022; 10: 912385 (11 pp.). https://doi.org/10.3389/fenvs.2022.912385
  • Kulmala M, Cai R, Stolzenburg D, Zhou Y, Dada L, Guo Y, et al.
    The contribution of new particle formation and subsequent growth to haze formation
    Environmental Science: Atmospheres. 2022; 2(3): 352-361. https://doi.org/10.1039/d1ea00096a
  • Kulmala M, Stolzenburg D, Dada L, Cai R, Kontkanen J, Yan C, et al.
    Towards a concentration closure of sub-6 nm aerosol particles and sub-3 nm atmospheric clusters
    Journal of Aerosol Science. 2022; 159: 105878 (11 pp.). https://doi.org/10.1016/j.jaerosci.2021.105878
  • Lehtipalo K, Ahonen LR, Baalbaki R, Sulo J, Chan T, Laurila T, et al.
    The standard operating procedure for Airmodus Particle Size Magnifier and nano-Condensation Nucleus Counter
    Journal of Aerosol Science. 2022; 159: 105896 (20 pp.). https://doi.org/10.1016/j.jaerosci.2021.105896
  • Marten R, Xiao M, Rörup B, Wang M, Kong W, He X-C, et al.
    Survival of newly formed particles in haze conditions
    Environmental Science: Atmospheres. 2022; 2(3): 491-499. https://doi.org/10.1039/d2ea00007e
  • Olin M, Okuljar M, Rissanen MP, Kalliokoski J, Shen J, Dada L, et al.
    Measurement report: atmospheric new particle formation in a coastal agricultural site explained with binPMF analysis of nitrate CI-APi-TOF spectra
    Atmospheric Chemistry and Physics. 2022; 22(12): 8097-8115. https://doi.org/10.5194/acp-22-8097-2022
  • Quéléver LLJ, Dada L, Asmi E, Lampilahti J, Chan T, Ferrara JE, et al.
    Investigation of new particle formation mechanisms and aerosol processes at Marambio Station, Antarctic Peninsula
    Atmospheric Chemistry and Physics. 2022; 22(12): 8417-8437. https://doi.org/10.5194/acp-22-8417-2022
  • Rörup B, Scholz W, Dada L, Leiminger M, Baalbaki R, Hansel A, et al.
    Activation of sub-3 nm organic particles in the particle size magnifier using humid and dry conditions
    Journal of Aerosol Science. 2022; 161: 105945 (11 pp.). https://doi.org/10.1016/j.jaerosci.2021.105945
  • Shen J, Scholz W, He X-C, Zhou P, Marie G, Wang M, et al.
    High gas-phase methanesulfonic acid production in the OH-initiated oxidation of dimethyl sulfide at low temperatures
    Environmental Science and Technology. 2022; 56(19): 13931-13944. https://doi.org/10.1021/acs.est.2c05154
  • Siegel K, Neuberger A, Karlsson L, Zieger P, Mattsson F, Duplessis P, et al.
    Using novel molecular-level chemical composition observations of high arctic organic aerosol for predictions of cloud condensation nuclei
    Environmental Science and Technology. 2022; 56(19): 13888-13899. https://doi.org/10.1021/acs.est.2c02162
  • Su P, Joutsensaari J, Dada L, Arbayani Zaidan M, Nieminen T, Li X, et al.
    New particle formation event detection with Mask R-CNN
    Atmospheric Chemistry and Physics. 2022; 22(2): 1293-1309. https://doi.org/10.5194/acp-22-1293-2022
  • Thakur RC, Dada L, Beck LJ, Quéléver LLJ, Chan T, Marbouti M, et al.
    An evaluation of new particle formation events in Helsinki during a Baltic Sea cyanobacterial summer bloom
    Atmospheric Chemistry and Physics. 2022; 22(9): 6365-6391. https://doi.org/10.5194/acp-22-6365-2022
  • Wang M, Xiao M, Bertozzi B, Marie G, Rörup B, Schulze B, et al.
    Synergistic HNO3-H2SO4-NH3 upper tropospheric particle formation
    Nature. 2022; 605(7910): 483-489. https://doi.org/10.1038/s41586-022-04605-4
  • Yan C, Shen Y, Stolzenburg D, Dada L, Qi X, Hakala S, et al.
    The effect of COVID-19 restrictions on atmospheric new particle formation in Beijing
    Atmospheric Chemistry and Physics. 2022; 22(18): 12207-12220. https://doi.org/10.5194/acp-22-12207-2022
  • Baalbaki R, Pikridas M, Jokinen T, Laurila T, Dada L, Bezantakos S, et al.
    Towards understanding the characteristics of new particle formation in the Eastern Mediterranean
    Atmospheric Chemistry and Physics. 2021; 21(11): 9223-9251. https://doi.org/10.5194/acp-21-9223-2021
  • Caudillo L, Rörup B, Heinritzi M, Marie G, Simon M, Wagner AC, et al.
    Chemical composition of nanoparticles from α-pinene nucleation and the influence of isoprene and relative humidity at low temperature
    Atmospheric Chemistry and Physics. 2021; 21(22): 17099-17114. https://doi.org/10.5194/acp-21-17099-2021
  • Ozon M, Stolzenburg D, Dada L, Seppänen A, Lehtinen KEJ
    Aerosol formation and growth rates from chamber experiments using Kalman smoothing
    Atmospheric Chemistry and Physics. 2021; 21(16): 12595-12611. https://doi.org/10.5194/acp-21-12595-2021
  • Surdu M, Pospisilova V, Xiao M, Wang M, Mentler B, Simon M, et al.
    Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry
    Environmental Science: Atmospheres. 2021; 1(6): 434-448. https://doi.org/10.1039/D1EA00050K
  • Zhou Y, Hakala S, Yan C, Gao Y, Yao X, Chu B, et al.
    Measurement report: new particle formation characteristics at an urban and a mountain station in northern China
    Atmospheric Chemistry and Physics. 2021; 21(23): 17885-17906. https://doi.org/10.5194/acp-21-17885-2021