Dr. David Bell


Paul Scherrer Institut
Forschungsstrasse 111
5232 Villigen PSI

My vision is to systematically study the ways aerosols are formed and the different ways they evolve when present in the atmosphere in controlled ways. I lead these studies at the atmospheric simulation chambers present at PSI where it is possible to simulate aerosol formation and aging processes under controlled conditions. At the chambers my interests include using cutting edge instrumentation to study the chemical composition of organic aerosol in real-time.  These studies focus on a wide range of aerosols include secondary organic aerosol from any desired volatile organic compound and oxidant combination, or from the oxidation of complex mixtures emitted from various combustion sources. Overall, these studies provide a systematic way to generate aerosol source profiles and assess their usefulness when identifying/constraining aerosol sources around the world

You can find out more about our facilities at: https://www.psi.ch/en/lac/smog-chamber

University of Wisconsin - Stevens Point B.Sc. (Chemistry and Mathematics - 2008)

University of Utah - PhD (Chemistry - 2013)

Pacific Northwest National Laboratory - Postdoctoral Researcher 2013 - 2017

Paul Scherrer Institute - Scientist 2017 - 2021 - Tenure Track 2021 - current

Bell, D. M., Zhang, J., Top, J., Bogler, S., Surdu, M., Slowik, J., Prevot, A., El Haddad, I., (2023) Sensitivity constraints of extractive electrospray for a model system and secondary organic aerosol, Analytical Chemistry, 95(37), 13788–13795 https://doi.org/10.1021/acs.analchem.3c00441

Bell, D. M., Pospisilova, V., Lopez-Hilfiker, F., Bertrand, A., Xiao, M., Zhou, X., … Slowik, J. G. (2023). Effect of OH scavengers on the chemical composition of α-pinene secondary organic aerosol. Environmental Science: Atmospheres, 3(1), 115-123. https://doi.org/10.1039/d2ea00105e

Bell, D. M., Wu, C., Bertrand, A., Graham, E., Schoonbaert, J., Giannoukos, S., … Mohr, C. (2022). Particle-phase processing of α-pinene NO3 secondary organic aerosol in the dark. Atmospheric Chemistry and Physics, 22(19), 13167-13182. https://doi.org/10.5194/acp-22-13167-2022

Kumar, V., Slowik, J. G., Baltensperger, U., Prevot, A. S. H., & Bell, D. M. (2023). Time-resolved molecular characterization of secondary organic aerosol formed from OH and NO3 radical initiated oxidation of a mixture of aromatic precursors. Environmental Science and Technology, 57(31), 11572-11582. https://doi.org/10.1021/acs.est.3c00225

Surdu, M., Lamkaddam, H., Wang, D. S., Bell, D. M., Xiao, M., Lee, C. P., … El Haddad, I. (2023). Molecular understanding of the enhancement in organic aerosol mass at high relative humidity. Environmental Science and Technology, 57(6), 2297-2309. https://doi.org/10.1021/acs.est.2c04587

Bogler, S., Daellenbach, K. R., Bell, D. M., Prévôt, A. S. H., El Haddad, I., & Borduas-Dedekind, N. (2022). Singlet oxygen seasonality in aqueous PM10 is driven by biomass burning and anthropogenic secondary organic aerosol. Environmental Science and Technology, 56(22), 15389-15397. https://doi.org/10.1021/acs.est.2c04554

Pospisilova, V., Bell, D. M., Lamkaddam, H., Bertrand, A., Wang, L., Bhattu, D., … Slowik, J. G. (2021). Photodegradation of α-pinene secondary organic aerosol dominated by moderately oxidized molecules. Environmental Science and Technology, 55(10), 6936-6943. https://doi.org/10.1021/acs.est.0c06752

Wu, C., Bell, D. M., Graham, E. L., Haslett, S., Riipinen, I., Baltensperger, U., … Mohr, C. (2021). Photolytically induced changes in composition and volatility of biogenic secondary organic aerosol from nitrate radical oxidation during night-to-day transition. Atmospheric Chemistry and Physics, 21(19), 14907-14925. https://doi.org/10.5194/acp-21-14907-2021