Skip to main content
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI) Paul Scherrer Institut (PSI)
Suche
Paul Scherrer Institut (PSI) Paul Scherrer Institut (PSI)

Hauptnavigation

  • Labs & User ServicesOpen mainmenu item
    • Overview
    • Research at PSI
    • Research Divisions and Labs
    • Facilities and Instruments
    • Research Initiatives
    • PSI User Labs
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • Useroffice
  • VisitorsOpen mainmenu item
    • Overview
    • Contact
    • How to find us
    • Public Events
    • Visitor Centre psi forum
    • Schülerlabor iLab
    • Center for Proton Therapy
  • IndustryOpen mainmenu item
    • Overview
    • Technology Transfer
    • Spin-off Companies
    • PARK innovAARE
  • Our ResearchOpen mainmenu item
    • Current topics from our research
    • Matter and Material
    • Human Health
    • Energy and Environment
    • Large Research Facilities
    • Brochures
    • Films
    • Media Corner
  • Career & Further EducationOpen mainmenu item
    • Job Opportunities
    • Personnel Policy
    • Working at PSI
    • Equal Opportunities, Diversity & Inclusion
    • Training and Further Education
    • Vocational Training
    • PSI Education Centre
    • Support Program "PSI Career Return Program"
    • PSI-FELLOW/COFUND
  • About PSIOpen mainmenu item
    • PSI in brief
    • Strategy
    • Guiding principles
    • Facts and figures
    • Organisational structure
    • Suppliers and customers
    • Customers E-Billing
    • IT and Computing
    • Safety at PSI (in German)

You are here:

  1. PSI Home
  2. Labs & User Services
  3. PSD
  4. LSB
  5. X-Ray Tomography
  6. Scientific Highlights
  7. Miniaturized fluidic circuitry observed in 3D

Secondary navigation

X-Ray Tomography Group

  • People
    • Alumni
  • Research
    • Synchrotron X-ray Tomography
    • Translational X-ray Imaging
    • X-ray Optics Design and Fabrication
  • Teaching and Education
    • Student Projects
  • Scientific Highlights
  • News
  • Publications
  • Download
6 May 2020

Miniaturized fluidic circuitry observed in 3D

3D rendering of an anti-tube
3D rendering of an anti-tube, a stable 81 μm diameter water channel bounded by MD4 ferrofluid.

Miniaturizing fluidic circuitry is critical to manipulate small amounts of liquids. Standard solid walls solutions are limited by flow rates and plagued by fouling. The team of Prof. Thomas Hermans at the University of Strasbourg in France managed to create wall-less aqueous liquid channels (called anti-tubes). In an immiscible magnetic liquid stabilized by a quadrupolar magnetic field, the diameter of those channels can be controlled and could reach dimensions as small as one micrometer with controlled flow rate. This new technique will change the way of manipulating small amounts of liquids like it is the case in fluid dynamics, pharmaceutical processes or more practically in the traditional peristaltic pump used to pump blood through the heart during surgery. A 3D rendering of an anti-tube, a stable 81 μm diameter water channel bounded by MD4 ferrofluid is shown in the figure.

Original Publication

Liquid flow and control without solid walls
Dunne P, Adachi T, Dev AA, Sorrenti A, Giacchetti L, Bonnin A, Bourdon C, Mangin PH, Coey JMD, Doudin B & Hermans TM
Nature, 581(7806), 58-62 (2020).
 

Contact

Dr. Anne Bonnin
Beamline Scientist, Swiss Light Source
Paul Scherrer Institut
Telephone: +41 56 310 4678
E-mail: anne.bonnin@psi.ch

Sidebar

top

Footer

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Switzerland
How to find us

Imprint
Terms and Conditions

Login

Telephone: +41 56 310 21 11
Telefax: +41 56 310 21 99
Contact form

Visitor Centre psi forum
School Lab iLab (in German)
Center for Proton Therapy

Follow us: Twitter (in English) LinkedIn Youtube Issuu RSS

Quicklinks

  • Phone Book/People Search
  • Digital User Office
  • Technology transfer
  • PSI Publications
  • Computing
  • Safety (in German)
  • Job Opportunities
  • Vocational Training (in German)
  • Suppliers
  • Customers E-Billing
  • PSI Guest House
  • PSI Gastronomie (in German)

For the media

  • Media Contact
  • Media Releases
  • Social Media Newsroom
  • Facts and Figures
  • PSI in brief
  • Films
  • DE
  • EN
  • FR