Scientific Highlights

2 February 2023

Discovery of a large unquenched orbital moment in a 2D van der Waals ferromagnet

3d transition metals often exhibit a quenched orbital moment when in a solid state system. Therefore, the proposition of a large unquenched orbital moment for V in VI3 caused some surprise and discussion in the scientific community. Experimental and theoretical works diverge on the fact of whether the orbital moment is quenched or not. In our work we have been able to give an answer this open issue, proposing also a model for the ground state of VI3.

Read more
15 December 2021

Fingerprint of Copper in Peptides Linked to Alzheimer's Disease

In an interdisciplinary project, researchers from the Laboratory of Nanoscale Biology in BIO  and the Laboratory for Condensed Matter in PSD have revealed the reaction between the nitrogen atoms of the amyloid-beta peptide and copper/zinc ions by using soft X-ray absorption spectroscopy.

Read more
4 November 2021
Lithium Fluoride on Ag(100): Dendrites vs. Islands

Vastly Different Morphologies Dependent on the Growth Temperature

Lithium fluoride is an important material which is technologically exploited in spintronics and organic light emitting devices. It turns out that there is a vast difference between the morphologies of ultrathin lithium fluoride grown on the (100) facet of a silver single crystal.  At room temperature dendrites are obtained while at elevated temperature lithium fluoride forms square islands. The system is an interesting model to study the crossover between diffusion limited aggregates and island growth.

Read more
25 October 2021
Artist's view of the functionalized endohedral fullerene on a graphite surface.

Magnetic Bistability at a Record High Temperature in a Sub-Monolayer of Endohedral Fullerenes

A team of the Leibniz Institute for Solid State Research (IFW) from Dresden, Germany, led by Dr Alexey Popov has now demonstrated a record blocking temperature of 28 Kelvin at which the magnetic bistability still survives in a submonolayer of a chemically functionalized species of endofullerenes. In this research, X-ray magnetic circular dichroism measurements at low temperatures and high magnetic field at the X-Treme beam line are crucial. The results pave the way toward using such single-molecule magnets as information carriers or magnetic bits.

Read more
26 August 2021
toc fig nno

Creating novel quantum phases via the heterostructure engineering

Within this synergetic collaboration, PSI scientists have investigated the correlation between magnetic and electronic ordering in NdNiO3 by tuning its properties through proximity to a ferromagnetic manganite layer. The main outcome is that the stray magnetic field from the manganite layer causes a novel ferromagnetic-metallic (FM-M) phase in NNO. This work demonstrates the utilization of heterostructure engineering for creating novel quantum phases.

Read more
15 April 2021

Hindering the magnetic dead layer in manganites

The authors demonstrate the stability of ferromagnetic order of one unit cell thick optimally doped manganite (La0.7Ba0.3MnO3, LBMO) epitaxially grown between two layers of SrRuO3 (SRO). LBMO shows ferromagnetism even above SRO Tc. Density Functional Theory calculations help understand the reasons behind this interesting result.

Read more
1 October 2019
Magnetic hysteresis of DyPc2/MgO

Understanding the Superior Stability of Single-Molecule Magnets on an Oxide Film

A research team centered at the X-Treme beam line at the Swiss Light Source has demonstrated that spin-phonon coupling plays a major role in enhancing the magnetic stability of so-called lanthanide phthalocyanine double decker single-molecule magnets. This understanding is important in order to employ such molecules in future spintronics applications.

Read more
23 March 2019

Photoswitching in a Molecular Cube

Niéli’s paper is accepted in the Journal of Physical Chemistry Letters! We use X-ray absorption spectroscopy and X-ray magnetic circular dichroism to watch directly how the Co and Fe ions in a molecular cube change their oxidation states and turn from diamagnetic into paramagnetic units upon light irradiation.

Read more
20 February 2019
Scheme of the XMCD mechanism and example spectrum.

New Method for Calculating Soft X-ray Magnetic Circular Dichroism Spectra

Scientists have demonstrated in a combined theoretical and experimental effort that the new ligand-field density functional theory method (LF-DFT) can be used to calculate the X-ray absorption spectra (XAS) and X-ray magnetic circular dichroism (XMCD) of lanthanide compounds from purely structural input.

Read more