Development of radionuclides for innovative radiopharmaceuticals
An important component of innovative radiopharmaceuticals, especially in oncology is the availability of alternative radionuclides with optimal decay properties, which allow to improve diagnostic or therapeutic efficiency. Currently a variety of accelerator, reactor (or Spallation Neutron Source) and generator produced radionuclides are developed and produced at PSI. Medical radionuclide must be available with high specific activity and purity. Here the choice of the nuclear reaction and subsequent radiochemical isolation strategy play a key role.
Localization and tracking of radio pharmaceuticals in vivo is performed by single photon emission computed tomography (SPECT) as well as by positron emission tomography (PET). The therapeutic radionuclides are particle emitters that are able to deposit a high quantity of energy in small volumes via a high "linear energy transfer" (LET). Here β-, α and also Auger electron emitters are used or considered to be useful for the therapeutic treatment.
The research group Radionuclide Development is a joint research group of the Laboratory of Radiochemistry and of the Center of Radiopharmaceutical Sciences at PSI.