Skip to main content
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Search
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIOpen mainmenu item
    • Research Initiatives
    • Ethics and Research integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsOpen mainmenu item
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Scientific Computing, Theory and Data
    • Large Research Facilities
  • Facilities and InstrumentsOpen mainmenu item
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesOpen mainmenu item
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • New ProjectsOpen mainmenu item
    • SLS 2.0
    • IMPACT
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

You are here:

  1. PSI Home
  2. Labs & User Services
  3. NUM
  4. LMX
  5. Physical Properties of Materials
  6. About the PPM Group

Secondary navigation

The Physical Properties of Materials Group

  • About the PPM Group Expanded submenu item
    • Funding
  • People
    • Alumni
  • Instrumentation and Services
    • Equipment
  • Research
  • Featured Papers
  • Useful Links
  • Publications
  • Useful links

  • Mesoscopic Systems
  • Thin Films and Interfaces
  • Solid State Chemistry
  • Laboratory for Multiscale materials eXperiments
  • Physical Properties of Materials
  • PSI Telefon Directory
Banner About 2019.jpg

About the Physical Properties of Materials Group

The Physical Properties of Materials Group prepares and characterizes advanced materials featuring novel structural, electric and magnetic properties. For these fundamental studies we use in-house equipment in combination with experiments at the PSI large scale facilities. Our research is focused on the study of complex transition metal oxides with highly correlated electrons, mostly in powder or single crystalline form. This class of materials is characterized by the presence of competing interactions which often results in unusual electronic and magnetic properties. Such properties are both, challenging from a fundamental point of view and interesting for applications, especially in the fields of energy technologies, data storage and advanced electronics.

We synthesize complex oxides in ceramic, single-crystalline or thin film form in collaboration with the Solid State Chemistry and the Mesoscopic Systems Groups (LMX, NUM), and with the Spectroscopy of Novel Materials Group (LSC, SYN). We characterize their magnetic and electronic properties using a broad palette of laboratory techniques (DC magnetization, AC susceptibility, electric resistivity, heat capacity) at temperatures ranging from 460 mK to 800 K. We operate and maintain one MPMS and two PPMS devices that we use alone, or in combination with external devices and home-made inserts for dielectric, pyroelectric, and ferroelectric measurements.

We make extensive use of the neutrons, x-rays and muon large scale facilities at PSI, where we use mostly diffraction, but also spectroscopy and imaging techniques. This fosters synergies with other groups at the Research with Neutrons and Muons and Photon Science Divisions. We have also interdisciplinary collaborative projects with the Energy and Environmental Research Division.

Our key research areas are:

  • Multiferroic materials
  • Complex oxides at the boundary between itinerant and localized behaviour
  • Energy materials

Our ultimate goal is to make the link between the crystal structure and the physical properties with the aim of establishing design principles leading to materials exhibiting novel phenomena and improved functional properties.

Sidebar

Contact

Physical Properties of Materials Group
Paul Scherrer Institut
5232 Villigen PSI
Switzerland
Homepage

Dr. Marisa Medarde
Head of Group
WLGA/027
tel: +41 56 310 3283
fax: +41 56 310 2688
marisa.medarde@psi.ch

Homepage PSI

Paul Scherrer Institut

Homepage NUM

Research with Neutrons and Muons NUM Division at PSI

Homepage LMX

Laboratory for Multiscale materials eXperiments

Scientific Advisory Committees

  • SINQ SAC
  • SμS SAC
  • CHRISP SAC
top

Footer

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Switzerland

Telephone: +41 56 310 21 11
Telefax: +41 56 310 21 99

How to find us
Contact

Visitor Centre psi forum
School Lab iLab (in German)
Center for Proton Therapy
PSI Education Centre
PSI Guest House
PSI Gastronomie (in German)
psi forum shop

Service & Support

  • Phone Book
  • User Office
  • Accelerator Status
  • PSI Publications
  • Suppliers
  • E-Billing
  • Computing
  • Safety (in German)

Career

  • Working at PSI
  • Job Opportunities
  • Training and further education
  • Career Center
  • Vocational Training (in German)
  • PSI Education Center

For the media

  • PSI in brief
  • Facts and Figures
  • Media corner
  • Media Releases
  • Social Media

Follow us: Twitter (in English) LinkedIn Youtube Facebook Instagram Issuu RSS

Footer legal

  • Imprint
  • Terms and Conditions
  • Editors' login