banner lmx 005.jpg

LMX: Laboratory for Multiscale materials eXperiments

The Laboratory for Multiscale materials eXperiments (LMX) focusses on designing novel functional materials in poly- and single crystalline form, as thin films and as multilayers. Read more about LMX


30 August 2018

Claire Donnelly dissertation research awards

In August 2018, Claire Donnelly was awarded the SPS Award in Computational Physics, sponsored by COMSOL, and the Werner Meyer-Ilse Memorial Award. We congratulate her on these awards as well as for the two awards received earlier this year: the ETH Medal for an outstanding doctoral thesis and the American Physical Society Richard L. Greene Dissertation Award, recognizing doctoral thesis research of exceptional quality and importance. These prizes are for her dissertation on “Hard X-ray Tomography of Three Dimensional Magnetic Structures”. Claire carried out her dissertation in the Laboratory for Mesoscopic Systems (ETH Zurich – Paul Scherrer Institute) in collaboration with the CXS group and the OMNY project, with experiments conducted at the cSAXS beamline, SLS, and Sebastian Gliga, a Marie Curie Fellow at the University of Glasgow. She will continue this research at the University of Cambridge with a Leverhulme Fellowship supported by the Newton Trust. We wish her every success! - Picture courtesy of the APS.

Scientific Highlights

29 November 2018

Spin triplet ground-state in the copper hexamer compounds A2Cu3O(SO4)3 (A = Na, K)

The compounds A2Cu3O(SO4)3(A=Na,K) are characterized by copper hexamers which are weakly coupled along the b axis to realize one-dimensional antiferromagnetic chains below TN≈3K, whereas the interchain interactions along the a and c axes are negligible. We investigated the energy-level splittings of the copper hexamers by inelastic neutron scattering below and above TN. The eight lowest-lying hexamer states could be unambiguously assigned and parametrized in terms of a Heisenberg exchange Hamiltonian, providing direct experimental evidence for an S=1 triplet ground-state associated with the copper hexamers. Therefore, the compounds A2Cu3O(SO4)3 serve as cluster-based spin-1 antiferromagnets to support Haldane's conjecture that a gap appears in the excitation spectrum below TN, which was verified by inelastic neutron scattering.
Keywords: Magnetism; one-dimensional antiferromagnetic chains; inelastic neutron scattering;

Facility: SSC, LMX, LNS, SINQ, Oak Ridge National Laboratory

Reference: A. Furrer et al., Phys. Rev. B 98, 180410(R) (2018)

Read full article: [here]

26 October 2018

Design of magnetic spirals in layered perovskites: Extending the stability range far beyond room temperature

In insulating materials with ordered magnetic spiral phases, ferroelectricity can emerge owing to the breaking of in- version symmetry. This property is of both fundamental and practical interest, particularly with a view to exploiting it in low-power electronic devices. Advances toward technological applications have been hindered, however, by the rel- atively low ordering temperatures Tspiral of most magnetic spiral phases, which rarely exceed 100 K. We have recently established that the ordering temperature of a magnetic spiral can be increased up to 310 K by the introduction of chemical disorder. Here, we explore the design space opened up by this novel mechanism by combining it with a targeted lattice control of some magnetic interactions. In Cu-Fe layered perovskites, we obtain Tspiral values close to 400 K, comfortably far from room temperature and almost 100 K higher than using chemical disorder alone. Moreover, we reveal a linear relationship between the spiral’s wave vector and the onset temperature of the spiral phase. This linear law ends at a paramagnetic-collinear-spiral triple point, which defines the highest spiral ordering temperature that can be achieved in this class of materials. On the basis of these findings, we propose a general set of rules for designing magnetic spirals in layered perovskites using external pressure, chemical substitutions, and/or epitaxial strain, which should guide future efforts to engineer magnetic spiral phases with ordering temperatures suitable for technological applications.
Facility: SINQ

Reference: T. Shang et al, Science Advances 4, eaau6386 (2018)

Read full article: here

25 October 2018

Rolling dopant and strain in Y-doped BiFeO3 epitaxial thin films for photoelectrochemical water splitting

We report significant photoelectrochemical activity of Y-doped BiFeO3 (Y-BFO) epitaxial thin films deposited on Nb:SrTiO3 substrates. The Y-BFO photoanodes exhibit a strong dependence of the photocurrent values on the thickness of the films, and implicitly on the induced epitaxial strain. The peculiar crystalline structure of the Y-BFO thin films and the structural changes after the PEC experiments have been revealed by high resolution X-ray diffraction and transmission electron microscopy investigations. The crystalline coherence breaking due to the small ionic radius Y-addition was analyzed using Willliamson-Hall approach on the 2Θ-ω scans of the symmetric (00l) reflections and confirmed by high resolution TEM (HR-TEM) analysis. In the thinnest sample the lateral coherence length (L||) is preserved on larger nanoregions/nanodomains. For higher thickness values L|| is decreasing while domains tilt angles (αtilt) is increasing. The photocurrent value obtained for the thinnest sample was as high as Jph = 0.72 mA/cm2, at 1.4 V(vs. RHE). The potentiostatic scans of the Y-BFO photoanodes show the stability of photoresponse, irrespective of the film’s thickness. There is no clear cathodic photocurrent observation for the Y-BFO thin films confirming the n-type semiconductor behavior of the Y-BFO photoelectrodes.
Reference: F. Haydous et al, Scientific Reports 8, 15826 (2018)

Read full article: here

15 October 2018

Observation of the out-of-plane magnetization in a mesoscopic ferromagnetic structure superjacent to a superconductor

The geometry of magnetic flux penetration in a high temperature superconductor at a buried interface was imaged using element-specific x-ray excited luminescence. We performed low tem- perature observation of the flux penetration in YBa2Cu3O7–δ (YBCO) at a buried interface by imaging of the perpendicular magnetization component in square Permalloy (Py) mesostructures patterned superjacent to a YBCO film. Element specific imaging below the critical temperature of YBCO reveals a cross-like geometry of the perpendicular magnetization component which is decorated by regions of alternating out-of-plane magnetization at the edges of the patterned Py structures. The cross structure can be attributed to the geometry of flux penetration originating from the superconductor and is reproduced using micromagnetic simulations. Our experimental method opens up possibilities for the investigation of flux penetration in superconductors at the nanoscale.
Facility: SLS

Reference: A.K. Suszka et al, Applied Physics Letters 113, 162601 (2018)

Read full article: here

25 September 2018

Evidence of a Coulomb-Interaction-Induced Lifshitz Transition and Robust Hybrid Weyl Semimetal in Td-MoTe2

Using soft x-ray angle-resolved photoemission spectroscopy we probed the bulk electronic structure of Td-MoTe2. We found that on-site Coulomb interaction leads to a Lifshitz transition, which is essential for a precise description of the electronic structure. A hybrid Weyl semimetal state with a pair of energy bands touching at both type-I and type-II Weyl nodes is indicated by comparing the experimental data with theoretical calculations. Unveiling the importance of Coulomb interaction opens up a new route to comprehend the unique properties of MoTe2, and is significant for understanding the interplay between correlation effects, strong spin-orbit coupling and superconductivity in this van der Waals material.
Facility: SLS

Reference: N. Xu et al, Physical Review Letters 121, 136401 (2018)

Read full article: here

18 September 2018

Influence of Plume Properties on Thin Film Composition in Pulsed Laser Deposition

Despite the apparent simplicity of pulsed laser deposition, consistent deposition of thin films with the desired thickness, composition, crystallinity, and quality still remains challenging. This article explores the influence of process parameters with respect to film thickness and composition, two key aspects for thin films which have a very strong effect on film properties, possible applications, and characterization. Using five perovskite materials, a systematic analysis of different process parameters, e.g., target material, deposition pressure, fluence, substrate temperature or target to substrate distance, is performed. The results are classified under target ablation, plasma expansion, and substrates effects, which provide vital guidance to reduce the degree of trial and error when producing thin films. Moreover, they enable the understanding of what should be considered, and avoided for the deposition of thin films.
Keywords: Pulsed Laser Ablation; Laserinduced plasma; Plasma spectroscopy; Thin films; Thin film properties;

Facility: Thin Films and Interfaces, LMX, ETHZ

Reference: A. Ojeda, M. Döbeli, and T. Lippert, Adv. Mat. Interfaces 5, 1701062 (2018)

Read full article: [here]

28 August 2018

Magnetoelectric inversion of domain patterns

The inversion of inhomogeneous physical states has great technological importance; for example, active noise reduction relies on the emission of an inverted sound wave that interferes destructively with the noise of the emitter1, and inverting the evolution of a spin system by using a magnetic-field pulse enables magnetic resonance tomography2. In contrast to these examples, inversion of a distribution of ferromagnetic or ferroelectric domains within a material is surprisingly difficult: field poling creates a single-domain state, and piece-by-piece inversion using a scanning tip is impractical. Here we report inversion of entire ferromagnetic and ferroelectric domain patterns in the magnetoelectric material Co3TeO6 and the multiferroic material Mn2GeO4, respectively. In these materials, an applied magnetic field reverses the magnetization or polarization, respectively, of each domain, but leaves the domain pattern intact. Landau theory indicates that this type of magnetoelectric inversion is universal across materials that exhibit complex ordering, with one order parameter holding the memory of the domain structure and another setting its overall sign. Domain-pattern inversion is only one example of a previously unnoticed effect in systems such as multiferroics, in which several order parameters are available for combination. Exploring these effects could therefore advance multiferroics towards new levels of functionality.
Reference: N. Leo et al, Nature 560, 466 (2018)

Read full article: here
Read a comment on the ETH Webpages: here.

7 August 2018

Pauling Entropy, Metastability, and Equilibrium in Dy2Ti2O7 Spin Ice

Determining the fate of the Pauling entropy in the classical spin ice material Dy2Ti2O7 with respect to the third law of thermodynamics has become an important test case for understanding the existence and stability of ice-rule states in general. The standard model of spin ice—the dipolar spin ice model—predicts an ordering transition at T ≈ 0.15K, but recent experiments by Pomaranski et al. suggest an entropy recovery over long timescales at temperatures as high as 0.5K, much too high to be compatible with the theory. Using neutron scattering and specific heat measurements at low temperatures and with long timescales (0.35K / 106s and 0.5K / 105s, respectively) on several isotopically enriched samples, we find no evidence of a reduction of ice-rule correlations or spin entropy. High-resolution simulations of the neutron structure factor show that the spin correlations remain well described by the dipolar spin ice model at all temperatures. Furthermore, by careful consideration of hyperfine contributions, we conclude that the original entropy measurements of Ramirez et al. are, after all, essentially correct: The short-time relaxation method used in that study gives a reasonably accurate estimate of the equilibrium spin ice entropy due to a cancellation of contributions.
Facility: SINQ

Reference: S.R. Giblin et al, Physical Review Letters 121, 067202 (2018)

Read full article: here

20 July 2018

Collective magnetism in an artificial 2D XY spin system

Two-dimensional magnetic systems with continuous spin degrees of freedom exhibit a rich spectrum of thermal behaviour due to the strong competition between fluctuations and correlations. When such systems incorporate coupling via the anisotropic dipolar interaction, a discrete symmetry emerges, which can be spontaneously broken leading to a low-temperature ordered phase. However, the experimental realisation of such two-dimensional spin systems in crystalline materials is difficult since the dipolar coupling is usually much weaker than the exchange interaction. Here we realise two-dimensional magnetostatically coupled XY spin systems with nanoscale thermally active magnetic discs placed on square lattices. Using low-energy muon-spin relaxation and soft X-ray scattering, we observe correlated dynamics at the critical temperature and the emergence of static long-range order at low temperatures, which is compatible with theoretical predictions for dipolar-coupled XY spin systems. Furthermore, by modifying the sample design, we demonstrate the possibility to tune the collective magnetic behaviour in thermally active artificial spin systems with continuous degrees of freedom.
Facility: SμS, SLS

Reference: N. Leo et al, Nature Communications 9, 2850 (2018)

Read full article: here