Low-Temperature Micro-Solid Oxide Fuel Cells with Partially Amorphous La0.6Sr0.4CoO3-δ Cathodes

Schematic comparison of the two main SOFC technologies (with planar design) illustrating the decrease of electrolyte thickness in order to lower the operating temperature. a) Anode-supported conventional (thick) SOFC and b) free-standing (thin) micro-SOFC membrane on a silicon substrate (not drawn to scale). c) FIB cross-section of a free-standing micro-SOFC membrane, the insulating Si3N4 layer and the etched Si substrate.

Partially amorphous La0.6Sr0.4CoO3-δ (LSC) thin-film cathodes are fabricated using pulsed laser deposition and are integrated in free-standing micro-solid oxide fuel cells (micro-SOFC) with a 3YSZ electrolyte and a Pt anode. A low degree of crystallinity of the LSC layers is achieved by taking advantage of the miniaturization of the cells, which permits low-temperature operation (300–450 °C). Thermomechanically stable micro-SOFC are obtained with strongly buckled electrolyte membranes. The nanoporous columnar microstructure of the LSC layers provides a large surface area for oxygen incorporation and is also believed to reduce the amount of stress at the cathode/electrolyte interface. With a high rate of failure-free micro-SOFC membranes, it is possible to avoid gas cross-over and open-circuit voltages of 1.06 V are attained. First power densities as high as 200–262 mW cm−2 at 400–450 °C are achieved. The area-specific resistance of the oxygen reduction reaction is lower than 0.3 Ω cm2 at 400 °C around the peak power density. These outstanding findings demonstrate that partially amorphous oxides are promising electrode candidates for the next-generation of solid oxide fuel cells working at low-temperatures.