NUM division - Publication Highlights
Low-temperature magnetic crossover in the topological kagome magnet TbMn6Sn6
Magnetic topological phases of quantum matter are an emerging frontier in physics and materials science, of which kagome magnets appear as a highly promising platform. Here, we explore magnetic correlations in the recently identified topological kagome system TbMn6Sn6 using muon spin rotation, combined with local field analysis and neutron diffraction. Our studies identify an out-of-plane ferrimagnetic structure with slow magnetic fluctuations which exhibit a critical slowing down below T*C1 ≃ 120 K and finally freeze into static patches with ideal out-of-plane order below TC1 ≃ 20 K....
Microscopic evidence for anisotropic multigap superconductivity in the CsV3Sb5 kagome superconductor
The recently discovered kagome superconductor CsV3Sb5 (Tc ≃ 2.5 K) has been found to host charge order as well as a non-trivial band topology, encompassing multiple Dirac points and probable surface states. Such a complex and phenomenologically rich system is, therefore, an ideal playground for observing unusual electronic phases. Here, we report anisotropic superconducting properties of CsV3Sb5 by means of transverse-field muon spin rotation (μSR) experiments.
Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing
Many in-memory computing frameworks demand electronic devices with specific switching characteristics to achieve the desired level of computational complexity. Existing memristive devices cannot be reconfigured to meet the diverse volatile and non-volatile switching requirements, and hence rely on tailored material designs specific to the targeted application, limiting their universality. “Reconfigurable memristors” that combine both ionic diffusive and drift mechanisms could address these limitations, but they remain elusive. Here we present a reconfigurable halide perovskite nanocrystal memristor that achieves on-demand switching between diffusive/volatile and drift/non-volatile modes by controllable electrochemical reactions.
Uniaxial pressure induced stripe order rotation in La1.88Sr0.12CuO4
Static stripe order is detrimental to superconductivity. Yet, it has been proposed that transverse stripe fluctuations may enhance the inter-stripe Josephson coupling and thus promote superconductivity. Direct experimental studies of stripe dynamics, however, remain difficult. From a strong-coupling perspective, transverse stripe fluctuations are realized in the form of dynamic “kinks”—sideways shifting stripe sections. Here, we show how modest uniaxial pressure tuning reorganizes directional kink alignment.
Square and rhombic lattices of magnetic skyrmions in a centrosymmetric binary compound
Magnetic skyrmions are topologically stable swirling spin textures with particle-like char- acter, and have been intensively studied as a candidate of high-density information bit. While magnetic skyrmions were originally discovered in noncentrosymmetric systems with Dzyaloshinskii-Moriya interaction, recently a nanometric skyrmion lattice has also been reported for centrosymmetric rare-earth compounds, such as Gd2PdSi3 and GdRu2Si2. For the latter systems, a distinct skyrmion formation mechanism mediated by itinerant electrons has been proposed, and the search of a simpler model system allowing for a better understanding of their intricate magnetic phase diagram is highly demanded. Here, we report the discovery of square and rhombic lattices of nanometric skyrmions in a centrosymmetric binary compound EuAl4, by performing small-angle neutron and resonant elastic X-ray scattering experiments.
Spin-triplet superconductivity in Weyl nodal-line semimetals
Topological semimetals are three dimensional materials with symmetry-protected massless bulk excitations. As a special case, Weyl nodal-line semimetals are realized in materials having either no inversion or broken time-reversal symmetry and feature bulk nodal lines. The 111-family, including LaNiSi, LaPtSi and LaPtGe materials (all lacking inversion symmetry), belongs to this class. Here, by combining muon-spin rotation and relaxation with thermodynamic measurements, we find that these materials exhibit a fully- gapped superconducting ground state, while spontaneously breaking time-reversal symmetry at the superconducting transition.
First demonstration of tuning between the Kitaev and Ising limits in a honeycomb lattice
Recent observations of novel spin-orbit coupled states have generated interest in 4d/5d transition metal systems. A prime example is the Jeff = 1/2 state in iridate materials and α-RuCl that drives Kitaev interactions. Here, by tuning the competition between spin-orbit interaction (λSOC) and trigonal crystal field (ΔT), we restructure the spin-orbital wave functions into a previously unobserved μ=1/2 state that drives Ising interactions.
The Running Bottom Quark Mass and the Higgs Boson
We present a new measurement of the bottom quark mass in the MS scheme at the renormalization scale of the Higgs boson mass from measurements of Higgs boson decay rates at the LHC: mb (mH) = 2.6 +0.36-0.31 GeV. The measurement has a negligible theory uncertainty and excellent prospects to improve at the HL-LHC and a future Higgs factory.
Direct observation of a dynamical glass transition in a nanomagnetic artificial Hopfield network
Spin glasses, generally defined as disordered systems with randomized competing interactions, are a widely investigated complex system. Theoretical models describing spin glasses are broadly used in other complex systems, such as those describing brain function, error-correcting codes or stock-market dynamics. This wide interest in spin glasses provides strong motivation to generate an artificial spin glass within the framework of artificial spin ice systems. Here we present the experimental realization of an artificial spin glass consisting of dipolar coupled single-domain Ising-type nanomagnets arranged onto an interaction network that replicates the aspects of a Hopfield neural network.