Direkt zum Inhalt
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI) Paul Scherrer Institut (PSI)
Suche
Paul Scherrer Institut (PSI) Paul Scherrer Institut (PSI)

Hauptnavigation

  • Labs & User ServicesÖffnen dieses Hauptmenu Punktes
    • Overview
    • Research at PSI
    • Research Divisions and Labs
    • Facilities and Instruments
    • Research Initiatives
    • PSI User Labs
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • Useroffice
  • BesucherÖffnen dieses Hauptmenu Punktes
    • Übersicht
    • Kontakt
    • Der Weg zu uns
    • Veranstaltungen am PSI
    • Besucherzentrum psi forum
    • Schülerlabor iLab
    • Zentrum für Protonentherapie
  • IndustrieÖffnen dieses Hauptmenu Punktes
    • Übersicht
    • Technologietransfer
    • Spin-off-Firmen
    • PARK innovAARE
  • Unsere ForschungÖffnen dieses Hauptmenu Punktes
    • Aktuelles aus unserer Forschung
    • Materie und Material
    • Mensch und Gesundheit
    • Energie und Umwelt
    • Grossforschungsanlagen
    • Allgemeine Broschüren
    • Filme
    • Für die Medien
  • Karriere & WeiterbildungÖffnen dieses Hauptmenu Punktes
    • Stellenangebote
    • Personalpolitik
    • Arbeiten am PSI
    • Chancengleichheit, Diversität & Inklusion
    • Aus- und Weiterbildung
    • Berufsbildung / Lehrstellen
    • PSI Bildungszentrum
    • Förderprogramm "PSI Career Return Program"
    • PSI-FELLOW/COFUND
  • Über das PSIÖffnen dieses Hauptmenu Punktes
    • Das PSI in Kürze
    • Strategie
    • Leitbilder
    • Zahlen und Fakten
    • Organisation
    • Lieferanten
    • Kunden E-Billing
    • IT und Computing
    • Sicherheit am PSI

Sie befinden sich hier:

  1. PSI Home
  2. Labs & User Services
  3. ENE
  4. LEC
  5. Scientific Highlights

Sekundäre Navigation

Electrochemistry Laboratory (LEC)

  • About LEC
  • Scientific Highlights
  • People
  • Research Groups
    • Battery Materials and Diagnostics
    • Battery Electrodes and Cells
    • Electrocatalysis and Interfaces
    • Fuel Cell Systems and Diagnostics
      • - Fuel Cell Systems
      • - Fuel Cell Diagnostics
      • - People
      • - Publications
      • - Partners
      • - Infrastructure and Services
    • Membranes and Electrochemical Cells
    • Neutron Imaging of Electrochemical Systems
      • NRES Projects
        • Patterned Wettability GDLs
        • Evaporative Cooling
        • PEWE Water Management
      • NRES Methods
        • Full Size Imaging
        • In plane imaging
        • Multi-cell
        • Losses Breakdown
        • GDL Dark field imaging
        • Water/Ice Distinction
      • NRES People
      • NRES Publications
    • Former Electrochemical Energy Storage
    • Former Electrochemical Energy Conversion
  • Instruments and Tools
  • Teaching
  • Seminar
  • Awards
  • Publications
  • LEC Annual Reports
  • News
  • PSI Electrochemistry Symposium

Info message

Dieser Inhalt ist nicht auf Deutsch verfügbar.

Scientific Highlights

Toggle filters
Datum
14. Januar 2021
Conversion efficiency based on the higher heating value (HHV) of hydrogen for the electrochemical water splitting reaction.

Efficient Water Electrolysis at Elevated Temperature using Commercial Cell Components

Decarbonization of the energy system across different sectors using power-to-X concepts relies heavily on the availability of low-cost hydrogen produced from renewable power by water electrolysis. Polymer electrolyte water electrolysis (PEWE) is a promising technology for hydrogen (and oxygen) production for distributed as a well as centralized operation. The total cost of hydrogen is dominated by the electricity cost. Therefore, increase of conversion efficiency is pivotal in improving the commercial viability of electrolytically produced hydrogen. In this study, we investigate the prospects of improving conversion efficiency by reducing the membrane thickness from 200 to 50 micron and increasing the cell temperature from 60 to 120°C.

Weiterlesen
17. Dezember 2020
SEM cross-section images of graphite–Si electrodes

Graphite Anodes with Si as Capacity-Enhancing Electrode Additive

Silicon is a long-standing candidate for replacing graphite as the active material in negative electrodes for Li-ion batteries, due to its significantly higher specific capacity. However, Si suffers from rapid capacity loss, as a result of the large volume expansion and contraction during lithation and de-lithiation. As an alternative to pure Si electrodes, Si could be used as a capacity-enhancing additive to graphite electrodes.

Weiterlesen
2. Dezember 2020
Chronoamperometry measurements

Oxygen Evolution Reaction Activity and Underlying Mechanism of Perovskite Electrocatalysts at Different pH

PSI researchers have studied the how the electrolyte pH values influence the oxygen evolution reaction (OER) activity and stability of different promising perovskite oxide catalysts for application as anodic electrodes in alkaline water electrolyzers. The OER activity and stability decreased decreasing the electrolyte pH values. By combining electrochemical studies and operando X-ray absorption spectroscopy measurements, it has been suggested that different reaction mechanisms dominate in alkaline and near-neutral electrolyte pH region.

 

Weiterlesen
19. November 2020
Cation Contamination in PEWEs

Analysis of cation contamination of polymer electrolyte water electrolysers (PEWEs)

With the help of in situ PEWE regeneration methods, we can potentially enable the treatment of degraded cells without the necessity of stack disassembly, saving operation costs of the plant. In this context, we observed the movement of cations in a PEWE cell using neutron imaging and compared it with a model. This model is expected to be useful for the early detection of cation contamination problems in PEWEs, and the monitoring of in situ regeneration.  

Weiterlesen
30. Oktober 2020
XPEEM post mortem/operando

Post mortem/operando XPEEM: for studying the surface of single particle in Li-ion battery electrodes

X-ray photoemission electron microscopy (XPEEM) with its excellent spatial resolution is a well-suited technique to elucidate the complex electrode-electrolyte interface reactions in Li-ion batteries. It provides element-specific contrast images and enables the acquisition of local X-ray absorption spectra on single particles. Here we demonstrate the strength of post mortem measurements and we show the first electrochemical cell dedicated for operando experiments in all-solid-state batteries.

 

Weiterlesen
8. Oktober 2020
NCM Full Cells

Improved Interfacial Stability of Ni-rich Oxide Full-Cells

PSI researchers have identified a novel electrolyte additive, allowing extended voltage range of Ni-rich oxide full-cells, while keeping excellent performance. The instability of cathode–electrolyte interface causes the structural degradation of cathode active material and the electrolyte consumption, resulting in a rapid capacity fading and shortening battery life-time. The PSI-identified additive help to alleviate these problems and extend battery life-time.

Weiterlesen
22. September 2020
figure_oer_v4.png

Understanding of the Oxygen Evolution Reaction Kinetics in Acidic Environment

The high operational expenditure of polymer electrolyte water electrolysis (PEWE) technology, dominated by kinetic losses from the sluggish oxygen evolution reaction (OER), inhibits large-scale market penetration. PSI researchers have developed a novel methodology to access underlying reaction mechanism of the OER. For the first time the reaction order for water has been determined. Advanced benchmarking of catalysts in technical environment also supports the development of novel, highly efficient catalyst materials.

Weiterlesen
20. August 2020
hl_5421_pbi

Bilayer Composite Membrane for the Vanadium Redox Flow Battery

The vanadium redox flow battery (VRFB) is designed for grid-scale energy storage applications. Ion-exchange membranes are performance and cost relevant components of redox flow batteries. Currently used materials are largely ‘borrowed’ from other applications that have different functional requirements. For next generation VRFBs, it would be desirable to develop membrane materials based on low-cost porous separators with low resistance and high transport selectivity to minimize vanadium-ion and electrolyte crossover.

Weiterlesen
4. August 2020
pefc_cochet

How to increase the power density of Polymer Electrolyte Fuel Cells with evaporative cooling

A system of evaporative cooling for Polymer Electrolyte Fuel Cells (PEFCs) has been developed at PSI, based entirely on one simple, yet effective change of one of the fuel cell components. Our team at the Electrochemistry Laboratory has demonstrated how this single change allows to operate a cell without the need of bulky and costly external humidifiers. Additionally, the proposed design has the potential to increase the power density of a PEFC stack by up to 35% due to the sparing of the space usually dedicated to the convective coolant circulation.  

Weiterlesen
  • 1
  • 2
  • 3
  • Nächste Seite ››
  • Letzte Seite Last »

Mit Sidebar

Contact

Electrochemistry Laboratory
Paul Scherrer Institut
5232 Villigen-PSI
Switzerland

Laboratory Head a.i.
Dr. Felix N. Büchi
Telephone: +41 56 310 24 11
E-mail: felix.buechi@psi.ch


Secretary
Cordelia Gloor
Telephone: +41 56 310 29 19
E-mail: cordelia.gloor@psi.ch
top

Fussbereich

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Schweiz
Der Weg zu uns 

Impressum
Nutzungsbedingungen

Login

Telefon: +41 56 310 21 11
Telefax: +41 56 310 21 99
Kontaktformular

Besucherzentrum psi forum
Schülerlabor iLab
Zentrum für Protonentherapie

Folgen Sie uns: Twitter (deutsch) LinkedIn Youtube Issuu RSS

Quicklinks

  • Telefonbuch/​Personensuche
  • Digital User Office
  • Technologietransfer
  • Publikationen des PSI
  • Computing
  • Sicherheit
  • Stellenangebote
  • Berufsbildung
  • Lieferanten
  • Kunden E-Billing
  • PSI Guest House
  • PSI Gastronomie

Für die Medien

  • Medienkontakt
  • Medienmitteilungen
  • Social Media Newsroom
  • Zahlen und Fakten
  • Das PSI in Kürze
  • Filme und Videos
  • DE
  • EN
  • FR