Grands instruments de recherche
Parfois, l'observation de très petits objets nécessite des appareils particulièrement grands, car ce sont les seuls capables de générer les sondes
indispensables pour radiographier la matière afin d'obtenir les informations recherchées. PSI entretient et utilise plusieurs installations de ce type qu'il met également à la disposition de scientifiques d'autres instituts au titre de prestation de service. Ces installations n'ont pas leur équivalent en Suisse, certains appareils utilisés à PSI sont même uniques au monde.
Plus d'information sur le sujet Grands instruments de recherche
Informations supplémentaires
Prêts pour le SwissFEL
Depuis des années, des chercheurs du PSI testent des méthodes d'expérimentation, qui permettront au laser à rayons X SwissFEL d'inspecter des matériaux novateurs, destinés aux appareils électroniques. Grâce à une astuce bien particulière, ils arrivent à produire à la Source de Lumière Suisse (SLS) du PSI une lumière aux propriétés analogues à celles du SwissFEL. Les scientifiques ont ainsi réussi à montrer que, fondamentalement, les expériences prévues étaient possibles. Ils ont aussi proposé la construction au SwissFEL d'une station de mesure à cet effet.
Le SwissFEL est prêt pour être installé
Au cours des quatre dernières années, des chercheurs du PSI ont développé et soigneusement testé sur le banc d’essai « SwissFEL Injecteur », des technologies-clé pour le laser à rayons X SwissFEL. Le programme de recherche est maintenant achevé. L’installation du nouveau grand instrument de recherche démarre début 2015.
Un grand instrument de recherche disparaît dans la forêt
Dans la forêt de Würenlingen, le bâtiment du nouveau grand instrument de recherche du PSI SwissFEL n’a pas profité longtemps du soleil. Il est actuellement en train de disparaître sous une levée de terre. Ce comblement est une mesure parmi beaucoup d’autres, visant une intégration aussi réussie que possible de l’installation dans son environnement.
Cérémonie : la pose de la première pierre de l’ESS souligne son importance scientifique
Aujourd’hui, plusieurs centaines de représentants du monde scientifique, venus de différents pays européens, se sont rassemblé sur le chantier de la source européenne de spallation (European Spallation Source ESS) à Lund, en Suède, pour la cérémonie de pose de la première pierre de l’ESS. Cet événement marque la pose des fondations de cette nouvelle installation, dont la construction a récemment démarré, mais aussi celle d’une nouvelle phase dans la recherche scientifique européenne.
Des colosses pour commander de minuscules particules
Dans un accélérateur de particules, ce sont les aimants qui tirent les ficelles : si protons et électrons gardent le cap, c’est en effet grâce à eux. Ces aimants n’ont toutefois pas grand-chose en commun avec ceux qui garnissent la porte de notre réfrigérateur. Au PSI, ils sont nombreux à peser bien plus lourd que ledit réfrigérateur. Et malgré leur puissance, ce sont des chefs-d’uvre de précision.
Il date des années 1980, mais il est toujours aussi fiable
L’origine du faisceau de protons au PSI est un accélérateur linéaire au look rétro. Ce modèle charismatique est baptisé Cockcroft-Walton, du nom de l’inventeur du principe. Depuis 1984, il fournit la première étape d’accélération des protons, qui sont ensuite amenés dans l’accélérateur circulaire à une vitesse équivalant à 80% de la vitesse de la lumière. Depuis des décennies, c’est ici qu’est généré un faisceau de protons remarquable qui, grâce à des améliorations continues, détient même depuis 1994 le record du monde du faisceau le plus performant.
Mit Licht neues Material erzeugt
Forschende des Paul Scherrer Instituts haben mithilfe kurzer Lichtblitze aus einem Laser die Eigenschaften eines Materials kurzzeitig so deutlich verändert, dass gewissermassen ein neues Material entstanden ist und die Veränderungen am Röntgenlaser LCLS in Kalifornien untersucht. Nach der Inbetriebnahme des PSI-Röntgenlasers SwissFEL werden solche Experimente auch am PSI möglich sein.Cette actualité n'existe qu'en allemand.
Tag der offenen SwissFEL-Baustelle
Vergangenen Sonntag luden das Paul Scherrer Institut PSI und die Arbeitsgemeinschaft EquiFEL Suisse die Einwohnerinnen und Einwohner der Umgebung zum Tag der offenen SwissFEL-Baustelle ein. Rund 600 Interessierte informierten sich an mehreren Stationen über den aktuellen Bau- und Projektstand.Cette actualité n'existe qu'en allemand.
Nouvelle éclairage sur le processus de photosynthèse
La manière dont les algues et les plantes répondent à la lumière a été réinterprétée sur la base des résultats d'expériences qui ont étudié les changements structuraux en temps réel dans les algues vertes. Dans des conditions de lumière particulières au cours de la photosynthèse, l'empilement et l'alignement bien ordonnés des membranes photosensibles dans les algues sont perturbés. Les protéines enfouies dans la membrane qui captent la lumière deviennent plutôt quasiment inactives, il n’y a aucun déplacement significatif. Jusqu’à présent on considérait en effet que les protéines qui captent la lumière se déplaçaient autour des membranes.
Un grand ouvrage au millimètre près
Pour que les électrons puissent atteindre l’énergie nécessaire, leur trajectoire dans l’accélérateur linéaire doit être absolument rectiligne. La plus petite courbure est synonyme d’une perte de qualité du faisceau d’electrons, que l’accélérateur linéaire SwissFEL, relativement court, ne peut pas se permettre. Lors de la construction du bâtiment, même la courbure de la Terre doit donc être compensée.
Fonte Quantique
Des passages à l'état d'agrégats déclenchés par les effets quantiques à en physique on parle de transitions de phases quantiques à jouent un rôle dans de nombreux phénomènes étonnants dans les corps solides, comme la supraconductivité à haute température. Des chercheurs de Suisse, du Royaume-Uni, de France et de Chine ont modifié de manière ciblée les fluctuations quantiques dans la structure magnétique du matériau TlCuCl3 en l'exposant à la pression externe et en faisant varier cette pression. A l'aide des neutrons, ils ont pu observer ce qui se passe dans une transition de phase quantique au cours de laquelle la structure magnétique fond de manière quantique.
Observation en direct avec un laser à rayons X : l’électricité contrôle la magnétisation
Des chercheurs de l’EPF Zurich et du PSI montrent qu’il est possible de modifier la structure magnétique très rapidement dans certains matériaux novateurs. L’effet pourrait trouver une application dans de futurs disques durs performants.
L'accélérateur de protons du PSI : 40 ans de recherche de pointe
Teaser: Recherche sur les matériaux, physique des particules, biologie moléculaire, archéologie : depuis 40 ans, le grand accélérateur de protons de l’Institut Paul Scherrer (PSI) rend possible de la recherche de pointe dans différents domaines.
L'art de l'ingénierie, sur mesure
Pour que les électrons du SwissFEL ne se fourvoient pasCoûts réduits et taux d’erreurs minimal : dans le développement des alimentations de puissance pour les aimants du SwissFEL, les ingénieurs du PSI de la Section Electronique de puissance se sont fixé des objectifs ambitieux.
High-tech jusqu’au toit
Dans la forêt de Würenlingen, les travaux de constructions avancent à grands pas : le bâtiment du SwissFEL, le nouveau grand instrument de recherche de l’Institut Paul Scherrer, doit être achevé d’ici fin 2014. Les exigences à satisfaire par la construction sont élevées. Le bâtiment doit assurer une exploitation sans heurt de cette installation hautement sensible.
SwissFEL – la machine : lumière laser par amplification en avalanche
SwissFEL produira des rayons X ayant les propriétés du laser. L’amplification en avalanche nécessaire à la génération de la lumière est possible grâce à un procédé connu sous le terme de Microbunching à Le paquet d’électrons se divise dans l’onduleur en minces rondelles, qui émettent la lumière en phase. Un deuxième processus est en cours d’étude actuellement à le Seeding à qui devra permettre d’améliorer les caractéristiques de la lumière avec plus de précision.
SwissFEL – la machine: Le circuit- onduleur – là ou la lumière est générée
Le rayonnement X du SwissFEL est émis lorsque les électrons accélérés dans l’accélérateur linéaire sont dirigés de force dans une trajectoire sinusoidale. La trajectoire des électrons est assurée dans l’onduleur par l’action des rangées d’aimants. La longueur du circuit- onduleur sera de 60 mètres.
Contrôle de la magnétisation à la picoseconde près
Un laser térahertz, développé à l’Institut Paul Scherrer, permet de contrôler de manière ciblée la magnétisation d’un matériau en un laps de temps de l’ordre de la picoseconde. Dans le cadre de leur expérience, les chercheurs ont soumis un matériau magnétisé à des impulsions lumineuses extrêmement courtes émises par le laser. Le champ magnétique de l’impulsion lumineuse a pu écarter les moments magnétiques de leur position de repos pour leur faire suivre le tracé exact du champ magnétique du laser avec un infime décalage. Le laser térahertz utilisé dans cette expérience est l’un des plus puissants au monde.
SwissFEL - la machine: L’accélérateur linéaire
Dans l’accélérateur linéaire, le faisceau d’électrons acquiert l’énergie cinétique nécessaire, afin de produire les rayons X. La longueur de l’accélérateur linéaire- est de plus de 300 mètres à il est constitué de 11752 disques de cuivre de forme bien spécifique, dans lesquels est produit le champ d’accélération.
Le SwissFEL- la machine: La source d'électrons
Le faisceau d’électrons de SwissFEL est généré dans la source d’électrons. Chaque composant fait l’objet d’exigences très sévères. Afin qu’une opération optimale du SwissFEL soit assurée, le faisceau électronique doit être de la meilleure qualité possible dès le départ.