Skip to main content
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Search
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIOpen mainmenu item
    • Research Initiatives
    • Ethics and Research integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsOpen mainmenu item
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Scientific Computing, Theory and Data
    • Large Research Facilities
  • Facilities and InstrumentsOpen mainmenu item
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesOpen mainmenu item
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • New ProjectsOpen mainmenu item
    • SLS 2.0
    • IMPACT
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

You are here:

  1. PSI Home
  2. Labs & User Services
  3. PSD
  4. LSC
  5. MICMAG Group
  6. Scientific Highlights and News
  7. Ultrafast electron localization

Secondary navigation

Microscopy & Magnetism Group

  • People
  • Research
  • Scientific Highlights and News Expanded submenu item
    • Scientific Highlights 2014 and earlier
  • MM Workshop
  • Publications
27 September 2021

Ultrafast electron localization

EuNiGe

When exciting a material with a fs intense laser pulse, it is well known that electrons are ejected from atoms during the exposure time, which is e.g. important for photodissociation processes. For X-rays this process is known as “diffract before destroy” and is extensively employed to solve protein crystal structures at XFELs. However, how and how fast electrons can be localized in a correlated metal, i.e. adding electrons in a localized atomic shell, taking them out of an electron gas, is completely unclear.

Here, we address this fundamental question using a correlated electron material and state-of-art pump-probe techniques. We could quantify the number of electrons that get localized on ultrafast timescale out of an “electron gas” into 4f states. The electron localization also strongly impacts the crystal structure, which changes were also determined. We find that it correlates with an increase of 4f states/conduction electrons hybridization and exclude that this is driven by a “coherent” volume change of the lattice.

These findings open a series of fundamental questions in the field of correlated electron systems such as: What leads to the change of hybridization on such a time scale? What is the bottle neck for such a process and what is the role of the magnetic moments that are created when additional electrons are localized in the 4f states? Addressing these questions will strongly impact our understanding of correlated metals. 

Contact

Dr Urs Staub
Microscopy and Magnetism Group
Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
Telephone: +41 56 310 44 94
E-mail: urs.staub@psi.ch

Original Publication

ULTRAFAST ELECTRON LOCALIZATION IN THE EuNi2(Si0.21Ge0.79)2 CORRELATED METAL
Jose R. L. Mardegan, Serhane Zerdane, Giulia Mancini, Vincent Esposito, Jérémy R. Rouxel, Roman Mankowsky, Cristian Svetina, Namrata Gurung, Sergii Parchenko, Michael Porer, Bulat Burganov, Yunpei Deng, Paul Beaud, Gerhard Ingold, Bill Pedrini, Christopher Arrell, Christian Erny, Andreas Dax, Henrik Lemke, Martin Decker, Nazaret Ortiz, Chris Milne, Grigory Smolentsev, Laura Maurel, Steven L. Johnson, Akihiro Mitsuda, Hirofumi Wada, Yuichi Yokoyama, Hiroki Wadati, and Urs Staub
Phys. Rev. Research 3, 033211 – Published 3 September 2021
DOI: 10.1103/PhysRevResearch.3.033211

Sidebar

PSI Scientific Reports

Archive 2006-2012. The Scientific Reports – containing accounts of research topics from all the different areas – provide an impression of the variety of subjects researched at PSI.

top

Footer

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Switzerland

Telephone: +41 56 310 21 11
Telefax: +41 56 310 21 99

How to find us
Contact

Visitor Centre psi forum
School Lab iLab (in German)
Center for Proton Therapy
PSI Education Centre
PSI Guest House
PSI Gastronomie (in German)
psi forum shop

Service & Support

  • Phone Book
  • User Office
  • Accelerator Status
  • PSI Publications
  • Suppliers
  • E-Billing
  • Computing
  • Safety (in German)

Career

  • Working at PSI
  • Job Opportunities
  • Training and further education
  • Career Center
  • Vocational Training (in German)
  • PSI Education Center

For the media

  • PSI in brief
  • Facts and Figures
  • Media corner
  • Media Releases
  • Social Media

Follow us: Twitter (in English) LinkedIn Youtube Facebook Instagram Issuu RSS

Footer legal

  • Imprint
  • Terms and Conditions
  • Editors' login