Skip to main content
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Search
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIOpen mainmenu item
    • Research Initiatives
    • Ethics and Research integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsOpen mainmenu item
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Scientific Computing, Theory and Data
    • Large Research Facilities
  • Facilities and InstrumentsOpen mainmenu item
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesOpen mainmenu item
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • New ProjectsOpen mainmenu item
    • SLS 2.0
    • IMPACT
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

You are here:

  1. PSI Home
  2. Labs & User Services
  3. NUM
  4. LMU
  5. LEM
  6. Introduction
  7. Experimental Setup

Secondary navigation

LEM: Low-Energy Muons Group

  • Introduction Expanded submenu item
    • Experimental Setup
    • Moderator
    • Transport System
    • Data Acquisition
    • Experiments
  • People
    • Former Members
  • Research
  • Publications
    • LEM publications
    • Other LEM group publications
  • Contact

Low Energy Muons: Overview of the Experimental Setup

The 4-MeV surface muon beam passes an appropriate moderator consisting of a thin layer (a few 100 nanometer) of a van der Waals bound rare gas solid or solid nitrogen deposited on the downstream side of a 125-µm silver subtrate. The substrate is cooled down to ~10 K by a helium cryostat. An UHV environment is needed to avoid any uncontrolled deposition on the moderation target which would cause a decrease of the moderation efficency. A fraction of incoming muons yields very slow muons with a mean energy of about 15 eV. They are accelerated to energies up to 20 keV (low-energy muons) and then seperated by an electrostatic transport system from the dominant fraction of outcoming muons with a mean energy of about 500 keV. The low-energy muons are clearly identified by a time-of-flight (TOF) measurement between the start scintillator (beam counter) and the trigger detector. For optimizing the transport system settings a position sensitive micro-channel-plate detector (MCP2) is mounted at the sample position at the end of the transport system. The MCP2-detector is substituted by a sample cryostat or a sample heater when performing µSR investigations on thin films or multi-layer systems. The temperature range presently covers 2.5 - 570 K. Zero-, transverse- and longitudinal-field µSR measurements are possible with a maximum field of 0.34 T (WEW magnet, field applied along beam direction). Zero- and transverse-field µSR with a field applied parallel to the sample surface (AEW magnet, vertical magnetic field up to 0.03 T) are also possible. The sample is mounted electrically insulated on the cryostat in order to apply an acceleration or deceleration high voltage of up to +-12 kV to the sample. In this way the low-energy muons can be implanted with the full energy range between 0.5 and 30 keV. The positrons from the muons decaying in the sample are detected by 64 (WEW) or 32 (AEW) BC-400 scintillator segments surrounding the vacuum tube. Readout of the scintillators is achieved by APDs (avalanche photo detectors).




LEM Setup2012.png

Sidebar

LMU and Groups

  • Laboratory for Muon Spin Spectroscopy (LMU)
  • Low-Energy Muons Group
  • Bulk-µSR Group

SμS Facility

  • Instruments
  • Beamlines
  • User Services

User Office

Provides all information about user research at PSI Large Research Facilities

NUM Homepage

PSI Division Research with Neutrons and Muons.

top

Footer

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Switzerland

Telephone: +41 56 310 21 11
Telefax: +41 56 310 21 99

How to find us
Contact

Visitor Centre psi forum
School Lab iLab (in German)
Center for Proton Therapy
PSI Education Centre
PSI Guest House
PSI Gastronomie (in German)
psi forum shop

Service & Support

  • Phone Book
  • User Office
  • Accelerator Status
  • PSI Publications
  • Suppliers
  • E-Billing
  • Computing
  • Safety (in German)

Career

  • Working at PSI
  • Job Opportunities
  • Training and further education
  • Career Center
  • Vocational Training (in German)
  • PSI Education Center

For the media

  • PSI in brief
  • Facts and Figures
  • Media corner
  • Media Releases
  • Social Media

Follow us: Twitter (in English) LinkedIn Youtube Facebook Instagram Issuu RSS

Footer legal

  • Imprint
  • Terms and Conditions
  • Editors' login