Skip to main content
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Search
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIOpen mainmenu item
    • Research Initiatives
    • Ethics and Research integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsOpen mainmenu item
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Scientific Computing, Theory and Data
    • Large Research Facilities
  • Facilities and InstrumentsOpen mainmenu item
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesOpen mainmenu item
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • New ProjectsOpen mainmenu item
    • SLS 2.0
    • IMPACT
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

You are here:

  1. PSI Home
  2. Labs & User Services
  3. NES
  4. LES
  5. Synchrotron-based material characterization and neutron imaging

Secondary navigation

Laboratory for Waste Management (LES)

  • About LES
    • Organisational Structure
    • Program Committee Members
  • Team
  • Groups
  • Research Projects
  • Research Partners and Cooperations
  • Teaching and Education
  • LES Events
    • Events Archive
  • Software and Database
  • Scientific Highlights
  • Hot New Papers
  • Publications
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
    • 2012
    • 2011
    • 2010
    • 2009
    • 2008
    • 2007
    • 2006
    • 2005
    • 2004
    • 2003
    • 2002
    • 2001
    • 2000
    • 1999
    • 1998
    • 1997
    • 1996
    • 1995
  • Annual Reports
SLS.jpg

Synchrotron-based material characterization and neutron imaging

Synchrotron-based bulk X-ray absorption spectroscopy (XAS) allows determining detailed structural information such as coordination numbers, bond distances and system disorder. Furthermore, it allows resolving the oxidation state of investigated species. For instance, uptake on interlayer sites via cation exchange, inner sphere complex formation on edge sites and precipitation of newly formed phases, can all be clearly distinguished and characterized. XAS can also distinguish between mono- and poly-nuclear complexes forming at the surface of clay minerals, and mono- and bi-dentate binding of metals to clay edge sites.

We use XAS in conjunction with wet chemistry and modeling studies as an aid to understanding the uptake processes in different repository relevant materials including clays, cement, glass or spent nuclear fuel. Dedicated studies are performed to validate assumption about underlying molecular mechanism accepted in thermodynamic sorption models. The information’s derived from the XAS studies are used as input parameters for molecular modeling calculations and to improve existing sorption models.

Synchrotron-based micro X-ray absorption spectroscopy (micro-XAS) in combination with micro X-ray fluorescence (micro-XRF) and micro X-ray diffraction (micro-XRD) are powerful tools for spatially resolved micro-scale investigations of retention processes in heterogeneous systems. We have successfully applied these techniques in the investigations of uptake processes in argillaceous rocks and hardened cement paste. Here one of the essential questions is “On what mineral phase or phases is sorption occurring in the complex mineral assemblage?” and “Is it the same phase(s) assumed in the modeling?” In some cases minor minerals may well be important. Furthermore, we were able to shine light into the alkali-aggregate reaction, which is a severe alteration process limiting the lifetime of concrete structures exposed to water or moisture.

Scattering of neutrons by condensed matter depends on the isotopic composition of the sample. This property can be used for non-destructive 2D/3D imaging of material heterogeneities. In particular protons have the largest neutron scattering cross section, and thus make neutron imaging particularly sensitive to the sample water content. We apply neutron imaging for non-destructive, in situ characterization of porosity changes in heterogeneous materials caused by dissolution and precipitation reactions.

Sidebar

unibern logo.gif
Read more
Read more

Contact

Paul Scherrer Institut
Laboratory for Waste Management
Prof. Dr. Sergey Churakov
5232 Villigen PSI

Secretary
Deborah Schneider
Telephone: +41 56 310 24 17
E-mail: deborah.schneider@psi.ch

Contact

University of Bern
Institute of Geological Sciences
Prof. Dr. Sergey Churakov
Baltzerstrasse 1+3
3012 Bern

Homepage NES

Nuclear Energy and Safety Research Division at PSI

Intranet LES

Access for LES only
top

Footer

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Switzerland

Telephone: +41 56 310 21 11
Telefax: +41 56 310 21 99

How to find us
Contact

Visitor Centre psi forum
School Lab iLab (in German)
Center for Proton Therapy
PSI Education Centre
PSI Guest House
PSI Gastronomie (in German)
psi forum shop

Service & Support

  • Phone Book
  • User Office
  • Accelerator Status
  • PSI Publications
  • Suppliers
  • E-Billing
  • Computing
  • Safety (in German)

Career

  • Working at PSI
  • Job Opportunities
  • Training and further education
  • Career Center
  • Vocational Training (in German)
  • PSI Education Center

For the media

  • PSI in brief
  • Facts and Figures
  • Media corner
  • Media Releases
  • Social Media

Follow us: Twitter (in English) LinkedIn Youtube Facebook Instagram Issuu RSS

Footer legal

  • Imprint
  • Terms and Conditions
  • Editors' login