Direkt zum Inhalt
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI) Paul Scherrer Institut (PSI)
Suche
Paul Scherrer Institut (PSI) Paul Scherrer Institut (PSI)

Hauptnavigation

  • Labs & User ServicesÖffnen dieses Hauptmenu Punktes
    • Overview
    • Research at PSI
    • Research Divisions and Labs
    • Facilities and Instruments
    • Research Initiatives
    • PSI User Labs
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • Useroffice
  • BesucherÖffnen dieses Hauptmenu Punktes
    • Übersicht
    • Kontakt
    • Der Weg zu uns
    • Veranstaltungen am PSI
    • Besucherzentrum psi forum
    • Schülerlabor iLab
    • Zentrum für Protonentherapie
  • IndustrieÖffnen dieses Hauptmenu Punktes
    • Übersicht
    • Technologietransfer
    • Spin-off-Firmen
    • PARK innovAARE
  • Unsere ForschungÖffnen dieses Hauptmenu Punktes
    • Aktuelles aus unserer Forschung
    • Materie und Material
    • Mensch und Gesundheit
    • Energie und Umwelt
    • Grossforschungsanlagen
    • Allgemeine Broschüren
    • Filme
    • Für die Medien
  • Karriere & WeiterbildungÖffnen dieses Hauptmenu Punktes
    • Stellenangebote
    • Personalpolitik
    • Arbeiten am PSI
    • Chancengleichheit, Diversität & Inklusion
    • Aus- und Weiterbildung
    • Berufsbildung / Lehrstellen
    • PSI Bildungszentrum
    • Förderprogramm "PSI Career Return Program"
    • PSI-FELLOW/COFUND
  • Über das PSIÖffnen dieses Hauptmenu Punktes
    • Das PSI in Kürze
    • Strategie
    • Leitbilder
    • Zahlen und Fakten
    • Organisation
    • Lieferanten
    • Kunden E-Billing
    • IT und Computing
    • Sicherheit am PSI

Sie befinden sich hier:

  1. PSI Home
  2. Labs & User Services
  3. PSD
  4. LMN
  5. Research Groups
  6. Quantum Technologies
  7. Current projects
  8. Strained Germanium laser

Sekundäre Navigation

Laboratory for Micro and Nanotechnology

  • About LMN
    • Organisational Structure
  • Open Positions
  • People
  • Research Groups Ausgeklappter Submenü Punkt
    • Nanotechnology
    • X-ray Optics and Applications
      • X-ray Optics for Imaging and Spectroscopy
        • Fresnel Zone Plate for X-ray Microscopy
        • Blazed X-ray Optics
        • Zernike X-ray Phase Contrast Microscopy
        • Fresnel Zone Plates for RIXS
        • Refractive Lenses by 2 Photon 3D Lithography
      • Wavefront Metrology and Manipulation
        • Vortex Fresnel Zone Plates
        • Grating-based Wavefront Metrology
      • X-ray Optics for XFELs
        • Diamond Fresnel Zone Plates
        • Beam Splitter Gratings for Spectral Monitoring
        • A Delay Line for Ultrafast Pump-Probe Experiments
        • X-ray Streaking for Ultrafast Processes
    • Polymer Nanotechnology
      • Nanoimprint Lithography
      • Three Dimensional Structures
    • Molecular Nanoscience
      • On-surface Chemistry
      • Spins in Molecular Monolayers
      • SiC: Surfaces and Interfaces
      • Our Research Team
    • Advanced Lithography and Metrology
      • EUV Interference Lithography
      • EUV Lensless Imaging
      • ALM Nanoscience
    • Quantum Technologies Ausgeklappter Submenü Punkt
      • News and highlights
      • People
      • Open positions
      • Current projects Ausgeklappter Submenü Punkt
        • 2D semiconductor devices
        • CDW-based memory devices
        • Imaging quantum many-body states
        • Nonlinear magnonics
        • Rare-earth quantum magnets
        • Strained Germanium laser
      • Techniques
        • Cristallina-Q
        • IR beamline
        • Nano-fabrication
      • Publications
      • QTC@PSI
  • Facilities and Equipment
    • Cleanroom Labs
    • Surface Science Lab
    • Scanning Electron Microscopy
    • Scanning Probe Microscopy
    • PEARL Beamline
    • XIL Facility at the SLS
    • Nanoimprint Facilities
    • Electron Beam Lithography
  • LMN News
  • LMN Highlights
    • Archive
  • Publications
    • Publications 2011 - 2016

Info message

Dieser Inhalt ist nicht auf Deutsch verfügbar.

Strained Germanium laser

The entire digital world surrounding us is based on silicon CMOS. The constant improvement of the transistor performances observed in the last fifty years is nevertheless approaching the end [1], encouraging the development of new concepts to supply the continuously increasing demand for information technologies. Si-photonics, one of the most promising concepts, envisages the integration of photonics into the current electronical platforms. Although integration of many photonic elements – such as modulator splitter etc. is possible on a large scale, unfortunately silicon, by fundamental reasons, lacks to be an efficient light emitter and thus limits Si-photonic to finally skyrocket. A visionary way out of this dilemma is to use germanium instead of Si, which, thanks to its CMOS compatibility and favourable band structure, may become the workhorse of the next generation of fully Si-compatible group IV lasers materials.

Here, at PSI, we follow the two major concepts for achieving a direct bandgap in group IV semiconductors, which involve either tensile strained germanium and/or alloying Ge with Sn. Large tensile stress can be induced into Ge by micromechanical patterning and subsequent under etching of slightly biaxial stressed germanium on insulator substrates [2], offering a remarkable impact on the optical and material properties such as a strong reduction of the fundamental direct bandgap [3]. Furthermore, the simplicity of this wafer-based technology enables the investigation of a vast amount of physical properties at unprecedented strain levels in a variety of materials.

Based on above strain approach, in collaboration with CEA Grenoble and ETH Zürich, we could now demonstrate the first interband laser from elemental Ge [4]. When the Ge microbridges are loaded up to 6 % of strain, and integrated into an optical cavity [5] a highly efficient lasing is observed up to 100 K [4]. By making use of the unique set of tools available at PSI, we are currently investigating paths towards the room temperature electrical injected Ge laser, by exploring n-doping , biaxial versus uniaxial strain geometries, as well as the combination of strain and alloying with Sn.

ge_laser1
Figure 1 | (a) Schematic illustration of the strain enhancement process: once the geometry is defined and the underlying SiO2 is removed, the pads relax and thus stretch the microbridge. (b) Scanning electron microscopy (SEM) view of a strained microbridge integrated into a corner cube cavity; superimposed the calculation of a cavity mode with high quality-factor. (c) Below and above threshold emission spectra showing striking contrast between multi line (in grey) and a many orders of magnitude more intense lasing emission (in green).

Alternatively, GeSn alloys with Sn concentration of approximately 8% offer an indirect to direct bandgap crossover allowing the fabrication of group IV lasers. Recently this allowed for the successful demonstration of lasing [5,6,7]. This now offers the potential of a purely group IV epitaxially defined laser with similar fabrication methods as mature state of the art III-V semiconductor lasers.

This project is conducted in collaboration with the Forschungszentrum Jülich and CEA Grenoble.

Figure 3 (a) Integrated photoluminescence intensity from various GeSn alloys. Coloured curves show the modeled intensity obtained from joint density of states calculations with the band offset ΔE between Γ and L valley. (b) Excitation power dependent photoluminescence showing
Figure 2 | (a) Integrated photoluminescence intensity from various GeSn alloys. Coloured curves show the modeled intensity obtained from joint density of states calculations with the band offset ΔE between Γ and L valley. (b) Excitation power dependent photoluminescence showing

Funding: Ultra highly strained semiconductors: materials for new applications - SNF 162658

[1] M. Mitchell Waldrop. The chips are down for Moore’s law. Nature 530 (2016)
[2] M.J. Süess et al. Analysis of enhanced light emission from highly strained germanium microbridges. Nature Photonics 7 (2013).
[3] R. Geiger, Direct Band Gap Germanium for Si-Compatible Lasing (ETH-Zürich, 2016).
[4] F. T. Armand Pilon et al. Lasing in strained germanium microbridges. Nature Communications 10, (2019).
[5] T. Zabel et al. Top down method to introduce ultra-high elastic strain. Journal of material research 32 (2017).
[6] S. Wirths, et al., Nature Photonics 9, 88-92 (2015).
[7] D. Stange, et al., ACS Photonics 3, 7 (2016).
[8] V. Reboud et al. Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K. Appl. Phys. Lett. 111 (2017).

Project members

Francesco Taro Armand Pilon

PhD student

+41 56 310 43 08
francesco.armand-pilon@psi.ch
Photo of Stefan Stutz
Stefan Stutz

Spektroskopie Techniker

+41 56 310 45 65
stefan.stutz@psi.ch
Dr. Guy Matmon

Scientist

+41 56 310 35 49
guy.matmon@psi.ch
Hans Sigg
Dr. Hans-Christian Sigg

Scientific Advisor  Quantum Technologies

+41 56 310 40 48
hans.sigg@psi.ch

Mit Sidebar

Contact

Dr. Simon Gerber

Laboratory for Micro-
and Nanotechnology
Paul Scherrer Institut
5232 Villigen PSI
Switzerland

Telephone:
+41 56 310 
Telefax:
+41 56 210 2646
E-mail:
simon.gerber@psi.ch
top

Fussbereich

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Schweiz
Der Weg zu uns 

Impressum
Nutzungsbedingungen

Login

Telefon: +41 56 310 21 11
Telefax: +41 56 310 21 99
Kontaktformular

Besucherzentrum psi forum
Schülerlabor iLab
Zentrum für Protonentherapie

Folgen Sie uns: Twitter (deutsch) LinkedIn Youtube Issuu RSS

Quicklinks

  • Telefonbuch/​Personensuche
  • Digital User Office
  • Technologietransfer
  • Publikationen des PSI
  • Computing
  • Sicherheit
  • Stellenangebote
  • Berufsbildung
  • Lieferanten
  • Kunden E-Billing
  • PSI Guest House
  • PSI Gastronomie

Für die Medien

  • Medienkontakt
  • Medienmitteilungen
  • Social Media Newsroom
  • Zahlen und Fakten
  • Das PSI in Kürze
  • Filme und Videos
  • DE
  • EN
  • FR