Direkt zum Inhalt
  • Paul Scherrer Institut PSI
  • PSI Research, Labs & User Services

Digital User Office

  • Digital User Office
  • DE
  • EN
  • FR
Paul Scherrer Institut (PSI)
Suche
Paul Scherrer Institut (PSI)

Hauptnavigation

  • Research at PSIÖffnen dieses Hauptmenu Punktes
    • Research Initiatives
    • Research Integrity
    • Scientific Highlights
    • Scientific Events
    • Scientific Career
    • PSI-FELLOW
    • PSI Data Policy
  • Research Divisions and LabsÖffnen dieses Hauptmenu Punktes
    • Overview
    • Research with Neutrons and Muons
    • Photon Science
    • Energy and Environment
    • Nuclear Energy and Safety
    • Biology and Chemistry
    • Large Research Facilities
  • Facilities and InstrumentsÖffnen dieses Hauptmenu Punktes
    • Overview
    • Large Research Facilities
    • Facilities
    • PSI Facility Newsletter
  • PSI User ServicesÖffnen dieses Hauptmenu Punktes
    • User Office
    • Methods at the PSI User Facilities
    • Proposals for beam time
    • Proposal Deadlines
    • Data Analysis Service (PSD)
    • EU support programmes
  • DE
  • EN
  • FR

Digital User Office (mobile)

  • Digital User Office

Sie befinden sich hier:

  1. PSI Home
  2. Labs & User Services
  3. PSD
  4. LAP
  5. Scientific Highlights

Sekundäre Navigation

Advanced Photonics

  • About LAP
    • Organisational Structure
  • People
  • Groups
  • Beamlines
  • Projects
  • Scientific Highlights
  • Publications

Info message

Dieser Inhalt ist nicht auf Deutsch verfügbar.

Scientific Highlights

Toggle filters
Datum
9. November 2020
High-resolution X-ray microscopy of a test pattern with 9 nm line width

World Record: 7 nm Resolution in Scanning Soft X-ray Microscopy

During the past decade, scientists have put high effort to achieve sub-10 nm resolution in X-ray microscopy. Recent developments in high-resolution lithography-based diffractive optics, combined with the extreme stability and precision of the PolLux and HERMES scanning X-ray microscopes, resulted now in a so far unreached resolution of seven nanometers in scanning soft X-ray microscopy. Utilizing this highly precise microscopy technique with the X-ray magnetic circular dichroism effect, dimensionality effects in an ensemble of interacting magnetic nanoparticles can be revealed.

Weiterlesen
30. September 2020
Two-color, twin-focus zone plate

Two-color snapshots of ultrafast charge and spin dynamics

In a joint research effort, an international team of scientists lead by Emmanuelle Jal (Sorbonne Université) performed a time-resolved experiment at the FERMI free-electron laser to disclose the dynamic behavior of two magnetic element of a compount material in only one snapshot. The X-ray Optics and Applications group developed a dedicated optical element for this experiment that is usable with two different photon energies (colors) simultaneously.

Weiterlesen
25. September 2020
First light at Maloja endstation

First light in the SwissFEL Maloja endstation

The first endstation at the SwissFEL Athos soft X-ray branch is rapidly developing and on track for first experiments in 2021.

Weiterlesen
20. August 2020
OAM Imprinting on He Atoms

Photoelectric Effect with a Twist

In a joint research effort, an international team of scientists lead by Prof. Giovanni de Ninno (University of Nova Gorica, Elettra Sincrotrone Trieste) now demonstrated that an OAM-dependent dichroic effect can be observed on photoelectrons. The photoelectrons are released from a sample of He atoms that is excited by the strong extreme ultraviolet light pulses from the FERMI free electron laser, whereas the orbtial momentum is imprinted with an intense infrared laser pulse. The X-ray Optics and Applications group of PSI supported the team with their experience in the creation of OAM beams and during the experiments.

Weiterlesen
8. November 2019
Transmission measurement at the Bernina branch of the Aramis beamline of SwissFEL pic1

Transmission measurement at the Bernina branch of the Aramis Beamline of SwissFEL

An international collaboration consisting of metrology and photon diagnostics groups Germany, the U.S.A., Switzerland, and Japan performed a set of cross-calibration measurements of optical properties on the Bernina branch of the Aramis beamline [1].  The collaboration saw the DESY-developed gas detector, a novel diamond detector from Brookhaven, and a room temperature radiometer from AIST in Japan placed at the Bernina end station and measure the absolute intensity of the FEL light as it passed through the optical elements.  The cross-calibrated measurements used in conjuction with the photon beam intensity-gas (PBIG) monitor at the front end of the Aramis beamline to characterize the performance of the optical components on the Bernina branch and then compare them to the expected theoretical values.  The measurements were performed at photon energies of 6.08 and about 7.22 keV.

Weiterlesen
1. März 2019
Figure 1. Layout depicting the experimental conditions at the Alvra experimental station. (b) Fresnel simulation of the Talbot carpet: intensity distribution of the experimental conditions for a 1D diamond phase grating with a 200 nm pitch and 2.985 keV photon energy. The inset (c) shows the detailed structure of the interference pattern in the vicinity of the sample where the pitch is 190 nm

Towards X-ray Transient Grating Spectroscopy at SwissFEL

The high brilliance of new X-ray sources such as X-ray Free Electron Laser opens the way to non-linear spectroscopies. These techniques can probe ultrafast matter dynamics that would otherwise be inaccessible. One of these techniques, Transient Grating, involves the creation of a transient excitation grating by crossing X-ray beams on the sample. Scientists at PSI have realized a demonstration of such crossing by using an innovative approach well suited for the hard X-ray regime.

Weiterlesen
20. Juni 2018
teaser picture

Movie directors with extra roles

SwissFEL Storage Large Research Facilities

Data storage devices based on novel materials are expected to make it possible to record information in a smaller space, at higher speed, and with greater energy efficiency than ever before. Movies shot with the X-ray laser show what happens inside potential new storage media, as well as how the processes by which the material switches between two states can be optimised.

Weiterlesen
20. Juni 2018

MOOCs – a paradigm shift in education

In March 2018, the nine-week MOOC “Introduction to synchrotrons and x-ray free-electron lasers” (abbreviated to “SYNCHROTRONx”) came online via the edX provider of the École Polytechnique Fédérale de Lausanne (EPFL), created by Phil Willmott of the Swiss Light Source, Paul Scherrer Institute. “MOOC” is an acronym for “massive open online course”, a teaching platform started in the first decade of this century, which has become increasingly popular in the last five to six years. MOOCs have no limits to participation and are free. Some of the most popular MOOCs can attract many tens of thousands of participants. Even the most specialized subjects may have an initial enrollment of over a thousand, more than an order of magnitude larger than that typically found in traditional higher education. There were over 70 million MOOC enrollments covering nearly 10’000 subjects offered by the top five providers in 2017 alone!

Weiterlesen
30. Mai 2018

Hollywood in the Würenlingen woods

SwissFEL Biology Large Research Facilities

With the X-ray laser SwissFEL, researchers at PSI want to produce movies of biomolecules in action. This can reveal how our eyes function or how new drugs work.

Weiterlesen
6. April 2018

A first glance at the SwissFEL x-rays wave-front

X-ray Free Electron Lasers (XFELs) combine the properties of synchrotron radiation (short wavelengths) and laser radiation (high lateral coherence, ultrashort pulse durations). These outstanding machines allow to study ultra-fast phenomena at an atomic level with unprecedented temporal resolution for answering the most intriguing open questions in biology, chemistry and physics.

Weiterlesen
  • 1
  • 2
  • Nächste Seite ››
  • Letzte Seite Last »

Mit Sidebar

Contact

Laboratory for Advanced Photonics
OVGA/426
5232 Villigen PSI
Switzerland

Luc Patthey
Laboratory Head
+41 56 310 45 62
luc.patthey@psi.ch


Administration
Monika Mühlebach
+41 56 310 35 51
monika.muehlebach@psi.ch

Division for

Photon Science (PSD)

Laboratories

Macromolecules and Bioimaging (LSB)
Micro and Nanotechnology (LMN)
Condensed Matter (LSC)
Femtochemistry (LSF)
Advanced Photonics (LAP)
Non-linear Optics (LNO)

Facilities

SwissFEL
Swiss Light Source - SLS
Cleanrooms

5232 01/2021

5232 — Das Magazin des Paul Scherrer Instituts

01/2021
Öffnen in issuu.com
Herunterladen
top

Fussbereich

Paul Scherrer Institut

Forschungsstrasse 111
5232 Villigen PSI
Schweiz

Telefon: +41 56 310 21 11
Telefax: +41 56 310 21 99

Der Weg zu uns
Kontakt

Besucherzentrum psi forum
Schülerlabor iLab
Zentrum für Protonentherapie
PSI Bildungszentrum
PSI Guest House (in english)
PSI Gastronomie

Service & Support

  • Telefonbuch
  • User Office
  • Accelerator Status
  • Publikationen des PSI
  • Lieferanten
  • E-Rechnung
  • Computing
  • Sicherheit

Karriere

  • Arbeiten am PSI
  • Stellenangebote
  • Aus- und Weiterbildung
  • Berufsbildung
  • PSI Bildungszentrum

Für die Medien

  • Das PSI in Kürze
  • Zahlen und Fakten
  • Mediacorner
  • Medienmitteilungen
  • Social Media Newsroom

Folgen Sie uns: Twitter (deutsch) LinkedIn Youtube Issuu RSS

Footer legal

  • Impressum
  • Nutzungsbedingungen
  • Editoren-Login