XPS 2s.jpg

Electrocatalysis and Interfaces

Project Description

The Electrocatalysis and Interfaces Group was established in 2012 combining the electrocatalysis activites of the former Fuel Cell Group and the Interface analytical activities of the former Interface and Capacitor Group.
Electrocatalysis is the key topic for electrochemical energy conversion. In order to optimize rate, selectivity, energy and stability of a certain electrochemical reaction - such as oxygen reduction, oxygen evolution, hydrogen oxidation, and CO2 reduction - proper catalysts have to be developed and optimized. The respective surface and interface analytical tools are essential for the understanding of the catalyst and are utilized in the group.

Therefore the activities of the group cover two focal points - Electrocatalysis and Interface analysis including Electrochemical capacitors.

Electrocatalysis - opens new routes towards more efficient fuel cells and other electrochemical processes e.g. CO2 reduction. The group's main topics are investigations of the effect and utilization of oxides as support for O2 reduction catalysts and the optimization of CO2 reduction catalysts. Catalysts for electrolysis and reversible fuel cells are also studied in our group.

Interfaces - Surface analysis is essential for the understanding and optimization of catalytic and electrochemical interfaces and provides information about processes and electronic and molecular properties on a microscopic scale. The main topics at present are catalysis of nano particles and electrocatalysis. We also developed in situ UHV electrochemical cells for in situ studies of the electrolyte|electrode interface, in particular the ionic liquid | electrode interface.

Research on Capacitors, which continued to exist since 1995, concerned exclusively supercapacitors (electrochemical double layer capacitors utilizing very high surface area carbons) as high power electrochemical storage devices. This research activity has been abandoned 2014 in the favour of intensified catalysis research.

In addition we provide support for customers within and outside PSI.


Research Team

  • Thomas J. Schmidt, head
  • Daniel Abbott
  • Tobias Binninger
  • Xi Cheng
  • Emiliana Fabbri
  • Sebastian Henning
  • Juan Herranz
  • Baejung (Joseph) Kim
  • Alexandra Pătru
  • Anastasia Aleksandrovna Permyakova
  • Mauro Povia
  • Susan Taylor
  • Sandra Temmel (jointly with Materials Group)
  • Simon Tschupp (jointly with LMN)

Former Group Members

Yohan Paratcha 2014 - 2016  
Annett Rabis 2011 - 2015  
Julien Durst 2014 - 2015  
Kay Waltar 2013 - 2015  
Anja Habereder 2013 - 2014  
Mehtap Özaslan 2012 - 2014 Carl von Ossietzky Universität Oldenburg
Rüdiger Kötz 1989 - 2014 Elsevier
Moritz Hantel 2010 - 2013 SABIC
Daniel Weingarth 2010 - 2013 INM Leibniz Institute for New Materials
Jorge Ferreira de Araújo 2012 - 2013 Technische Universität Berlin
Annette Foelske-Schmitz 2004 - 2013 Technische Universität Wien
Paramaconi Rodriguez 2011 - 2012 University of Birmingham
Yuri Sasaki 2010 - 2011 Toyota Central R&D Laboratories, Inc.
Anastasia Peitz 2008 - 2011 ABB Schweiz AG, Micafil, Klingnau
Dario Cericola 2008 - 2011 TIMCAL Ltd, Bodio
Patrick Ruch 2005 - 2009 IBM Research Lab. Zürich
Jörg Wambach 2007 - 2009 LBK (PSI)
François Loviat 2007 - 2008 Sulzer Ltd
Jean-Claude Sauter 2001 - 2007 RUAG Aerospace
Matthias Hahn 1999 - 2007 EL-Cell GmbH
Olivier Barbieri 2003 - 2006 Spare Parts Operations Manager at Cartier
Flavio Campana 2001 - 2005 Cendres+Métaux SA
Carolin Stoessel-Sittig 2002 - 2004  
Bernhard Schnyder 1991 - 2004 Micro Crystal, Div. of ETA SA
Martin Baertschi 1999 - 2001  
Martin Baertsch 1995 - 2001 Swissmedic
Dario Aliatta 1997 - 2000 Rudolph Technologies
Artur Braun 1996 - 1999 EMPA
Pascal Haering 1994 - 1998 Renata SA
Melanie Sullivan 1992 - 1996  
Rainer Michaelis 1993 - 1995 Praxis für Musik-/Klangtherapie
Cesar Barbero 1989 - 1994 Universidad Nacional de Rio Cuarto
Maria C. Miras 1989 - 1994 Universidad Nacional de Rio Cuarto

Publications (2016-2013)

For previous publications see Publications Annual

  • Pt-Ni aerogels as unsupported electrocatalysts for the oxygen reduction reaction S. Henning, L. Kühn, J. Herranz, J. Durst, T. Binninger, M. Nachtegaal, M. Werheid, W. Liu, M. Adam, S. Kaskel, A. Eychmüller, T.J. Schmidt
    J. Electrochem. Soc. 163 (9), F998-F1003 (2016)
    DOI: 10.1149/2.0251609jesOG-5423
  • The effect of platinum loading and surface morphology on oxygen reduction activity S. Taylor, E. Fabbri, P. Levecque, T.J. Schmidt, O. Conrad
    Electrocatalysis 7 (4), 287–296 (2016)
    DOI: 10.1007/s12678-016-0304-3OG-5423
  • Interfacial effects on the catalysis of the hydrogen evolution, oxygen evolution and CO2-reduction reactions for (co-)electrolyzer development J. Herranz, J. Durst, E. Fabbri, A. Patru, X. Cheng, A.A. Permyakova, T.J. Schmidt
    Nano Energy (2016)
    DOI: 10.1016/j.nanoen.2016.01.027OG-5423
  • A simple one-pot Adams method route to conductive high surface area IrO2–TiO2 E. Oakton, D. Lebedev, A. Fedorov, F. Krumeich, J. Tillier, O. Sereda, T.J. Schmidt, Ch. Copéret
    New J. Chem. 40, 1834-1838 (2016)
    DOI: 10.1039/C5NJ02400EOG-5423
  • A highly flexible electrochemical flow cell designed for the use of model electrode materials on non-conventional substrates S.E. Temmel, S.A. Tschupp, T.J. Schmidt
    Rev. Sci. Instrum. 87, 045115 (2016)
    DOI: 10.1063/1.4947459OG-5423
  • Pt/IrO2-TiO2 cathode catalyst for low temperature polymer electrolyte fuel cell - Application in MEAs, performance and stability issues A. Patru, A. Rabis, S.E. Temmel, R. Kötz, T.J. Schmidt
    Catal. Today 262, 161-169 (2016)
    DOI: 10.1016/j.cattod.2015.09.009OG-5423
  • Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts T. Binninger, R. Mohamed, K. Waltar, E. Fabbri, P. Levecque, R. Kötz, T.J. Schmidt
    Sci. Rep. 5, 12167 (2015)
    DOI: 10.1038/ srep12167OG-5423
  • High-resolution and large-area nanoparticle arrays using EUV interference lithography K. Waiz, S.A. Tschupp, M. Oezaslan, T.J. Schmidt, J. Gobrecht, J.A. van Bokhoven, Y. Ekinci
    Nanoscale, 7, 7386-7393 (2015)
    DOI: 10.1039/c5nr00565eOG-5423
  • Electrocatalysis of perovskites: The influence of carbon on the oxygen evolution activity R. Mohamed, X. Cheng, E. Fabbri, P. Levecque, R. Kötz, O. Conrad, T.J. Schmidt
    J. Electrochem. Soc. 162, 6, F579-F586 (2015)
    DOI: 10.1149/2.0861506jesOG-5423
  • Particle-Support interferences in small-angle x-ray scattering from supported-catalyst materials T. Binninger, M. Garganourakis, J. Han, A. Patru, E. Fabbri, O. Sereda, R. Kötz, A. Menzel, T.J. Schmidt
    Phys. Rev. Applied 3, 024012 (2015)
    DOI: 10.1103/PhysRevApplied.3.024012OG-5423
  • Noble metal aerogels-synthesis, characterization, and application as electrocatalysts W. Liu, A.K. Herrmann, N.C. Bigall, P. Rodriguez, D. Wen, M. Oezaslan, T.J. Schmidt, N. Gaponik, A. Eychmüller
    Acc. Chem. Res. 48, 154-162 (2015)
    DOI: 10.1021/ar500237cOG-5423
  • Methyl phosphate formation as a major degradation mode of direct methanol fuel cells with phosphoric acid based electrolytes D. Aili, A. Vasiliev, J.O. Jensen, T.J. Schmidt, Q. Li
    J. Power Sources 279, 517-521 (2015)
    DOI: 10.1016/j.jpowsour.2015.01.010OG-5423
  • Oxygen Evolution Reaction on La1-xSrxCoO3 Perovskites: A Combined Experimental and Theoretical Study of Their Structural, Electronic, and Electrochemical Properties X. Cheng, E. Fabbri, M. Nachtegaal, I. Castelli, M. El Kazzi, R. Haumont, N. Marzari, T.J. Schmidt
    Chem. Mater. 27, 7662-7672 (2015)
    DOI: 10.1021/acs.chemmater.5b03138OG-5423
  • Silicone Nanofilament Supported Nickel Oxide: A New Concept for Oxygen Evolution Catalysts in Water Electrolyzers G.R. Meseck, E. Fabbri, T.J. Schmidt, S. Seeger
    Adv. Mater. Interfaces 2, 1500216/1-1500216/5 (2015)
    DOI: 10.1002/admi.201500216OG-5423
  • An electrochemical in situ study of freezing and thawing of ionic liquids in carbon nanopores D. Weingarth, R. Drumm, A. Foelske-Schmitz, R. Kötz, V. Presser
    Phys. Chem. Chem. Phys. 16, 21219-21224 (2014)
    DOI: 10.1039/c4cp02727bOG-5423
  • Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction E. Fabbri, A. Habereder, K. Waltar, R. Kötz, T.J. Schmidt
    Catal. Sci. Technol. 4, 3800-3821 (2014)
    DOI: 10.1039/c4cy00669kOG-5423
  • Catalyzed SnO2 thin films: theoretical and experimental insights into fabrication and electrocatalytic properties A. Rabis, D. Kramer, E. Fabbri, M. Worsdale, R. Kötz, T.J. Schmidt
    J. Phys. Chem. C 118, 11292-11302 (2014)
    DOI: 10.1021/jp4120139OG-5423
  • Carbon additives for electrical double layer capacitor electrodes D. Weingarth, D. Cericola, F.C.F. Mornaghini, T. Hucke, R. Kötz
    J. Power Sources 266, 475–480 (2014)
    DOI: 10.1016/j.jpowsour.2014.05.065OG-5423
  • Advanced cathode materials for polymer electrolyte fuel cells based on Pt/metal oxides: From model electrodes to catalyst systems E. Fabbri, A. Patru, A. Rabis, R. Kötz, T.J. Schmidt
    Chimia 68, 217–220 (2014)
    DOI: 10.2533/chimia.2014.217OG-5423
  • In-situ XRD and dilatometry investigation of the formation of pillared graphene via electrochemical activation of partially reduced graphite oxide M.M. Hantel, R. Nesper, A. Wokaun, R. Kötz
    Electrochim. Acta 134, 459-470 (2014)
    DOI: 10.1016/j.electacta.2014.04.063OG-5423
  • Composite electrode boosts the activity of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite and carbon toward oxygen reduction in alkaline media E. Fabbri, R. Mohamed, P. Levecque, O. Conrad, R. Kötz, T.J. Schmidt
    ACS Catal. 4 (4), 1061–1070 (2014)
    DOI: 10.1021/cs400903kOG-5423
  • Pt nanoparticles supported on Sb-doped SnO2 porous structures: developments and issues E. Fabbri, A. Rabis, R. Kötz, T.J. Schmidt
    Phys. Chem. Chem. Phys. 16, 13672-13681 (2014)
    DOI: 10.1039/c4cp00238eOG-5423
  • The effect of platinum nanoparticle distribution on oxygen electroreduction activity and selectivity E. Fabbri, S. Taylor, A. Rabis, P. Levecque, O. Conrad, R. Kötz, T.J. Schmidt
    ChemCatChem 6 (5), 1410–1418 (2014)
    DOI: 10.1002/cctc.201300987OG-5423
  • Determination of the electrochemically active surface area of metal-oxide Supported Platinum Catalyst T. Binninger, E. Fabbri, R. Kötz, T. J. Schmidt
    J. Electrochem. Soc. 161 (3), H121-H128 (2014)
    DOI: 10.1149/2.055403jesOG-5423
  • Ba0.5Sr0.5Co0.8Fe0.2O3-d Perovskite Activity towards the Oxygen Reduction Reaction in Alkaline Media E. Fabbri, R. Mohamed, P. Levecque, O. Conrad, R. Kötz, T.J. Schmidt
    ChemElectroChem 1 (2), 338-342 (2014)
    DOI: 10.1002/celc.201300157OG-5423
  • Parameters determining dimensional changes of porous carbons during capacitive charging M.M. Hantel, D. Weingarth, R. Kötz
    Carbon 69, 275-286 (2014)
    DOI: 10.1016/j.carbon.2013.12.026OG-5423
  • Platinum-Based Cathode Catalysts for Polymer Electrolyte Fuel Cells E. Fabbri, T.J. Schmidt
    Encyclopedia of Applied Electrochemistry, Springer Science + Business Media LLC, New York, R.F. Savinell, K. Ota, G, Krysa (Eds.), (2013).
    DOI: 10.1007/SpringerReference_303661OG-5423
  • Platinum-Based Anode Catalysts for Polymer Electrolyte Fuel Cells P. Rodriguez, T.J. Schmidt
    Encyclopedia of Applied Electrochemistry, Springer Science + Business Media LLC, New York, R.F. Savinell, K. Ota, G, Krysa (Eds.), (2013).
    DOI: 10.1007/SpringerReference_303660OG-5423
  • A comparative study of cathodic electrodeposited nickel hydroxide films electrocatalysts R. Amadelli, S. Ferro, S. Barison, R. Kötz, B. Schnyder, A.B. Velichenko
    Electrocatalysis 4, Issue 4, 329-337 (2013).
    DOI: 10.1007/s12678-013-0154-1OG-5423
  • Bimetallic aerogels: High-Performance electrocatalysts for the oxygen reduction reaction W. Liu, P. Rodriguez, L. Borchardt, A. Foelske, J. Yuan, A.-K. Herrmann, D. Geiger, Z. Zheng, S. Kaskel, N. Gaponik, R. Kötz, T.J. Schmidt, A. Eychmüller
    Angew. Chem. Int. Ed. 52, 9849-9852 (2013).
    DOI: 10.1002/anie.201303109OG-5423
  • Anisometric charge dependent swelling of porous carbon in an ionic liquid F. Kaasik, T. Tamm, M.M. Hantel, E. Perre, A. Aabloo, E. Lust, M.Z. Bazant, V. Presser
    Electrochem. Commun. 34, 196-199 (2013).
    DOI: 10.1016/j.elecom.2013.06.011OG-5423
  • Persistent electrochemical pillaring of graphene ensembles M.M. Hantel, T. Kaspar, R. Nesper, A. Wokaun, R. Kötz
    Electrochem. Commun. 34, 189-191 (2013).
    DOI: 10.1016/j.elecom.2013.06.007OG-5423
  • Durable oxide-based catalysts for application as cathode materials in polymer electrolyte fuel cells (PEFCs) A. Rabis, E. Fabbri, A. Foelske, M. Horisberger, R. Kötz, T.J. Schmidt
    ECS Trans. 50 (36), 9-17 (2013).
    DOI: 10.1149/05036.0009ecstOG-5423
  • A reliable determination method of stability limits for electrochemical double layer capacitors D. Weingarth, H. Noh, A. Foelske-Schmitz, A. Wokaun, R. Kötz
    Electrochim. Acta 103, 119-124 (2013).
    DOI: 10.1016/j.electacta.2013.04.057OG-5423
  • Investigation of diluted ionic liquid 1-ethyl-3-methyl imidazolium tetrafluoroborate electrolytes for intercalation-like electrodes used in supercapacitors M.M. Hantel, A. Płatek, T. Kaspar, R. Nesper, A. Wokaun, R. Kötz
    Electrochim. Acta 110, 234-239 (2013).
    DOI: 10.1016/j.electacta.2013.04.032OG-5423
  • PTFE bound activated carbon – a quasi reference electrode for ionic liquids and its application D. Weingarth, A. Foelske-Schmitz, A. Wokaun, R. Kötz
    ECS Trans. 50 (11), 111-117 (2013).
    DOI: 10.1149/05011.0111ecstOG-5423
  • Partially reduced graphene oxide paper: A thin film electrode for electrochemical capacitors M.M. Hantel, T. Kaspar, R. Nesper, A. Wokaun, R. Kötz
    J. Electrochem. Soc. 160 (4), A747-A750 (2013).
    DOI: 10.1149/2.019306jesOG-5423
  • Core level data of ionic liquids: Monitoring charging by in situ electrochemical X-ray photoelectron spectroscopy A. Foelske-Schmitz, D. Weingarth, A. Wokaun, R. Kötz
    ECS Electrochemistry Letters 2 (4), H13-H15 (2013).
    DOI: 10.1149/2.002304eelOG-5423
  • Cycle versus voltage hold - Which is the better stability test for electrochemical double layer capacitors? D. Weingarth, A. Foelske-Schmitz, R. Kötz
    J. Power Sources 225, 84-88 (2013).
    DOI: 10.1016/j.jpowsour.2012.10.019OG-5423
  • Electrocatalysis for PEFCs: Oxygen reduction on nanoparticles and extended surfaces T.J. Schmidt, A. Rabis, B. Schwanitz, G.G. Scherer
    Mater. Res. Soc. Symp. Proc. 1491 (2013).
    DOI: 10.1557/opl.2012.1738OG-5423
  • Narrowly dispersed silica supported osmium nanoparticles prepared by an organometallic approach: H2 and CO adsorption stoichiometry and hydrogenolysis catalytic activity J.E. Low, A. Foelske-Schmitz, F. Krumeich, M. Wörle, D. Baudouin, F. Rascón, Ch. Copéret
    Dalton Trans. 42, 12620-12625 (2013).
    DOI: 10.1039/c3dt50980jOG-5423