Recherche

Affichage de 31 à 45 sur 126
Cliquez ici pour accéder à la documentation de la recherche avancée
Schematic representation of the degradation mechanism at the LCO-LPS interface

Reactivity and potential profile across the electrified LiCoO2-Li3PS4 interface probed by operando X-ray photoelectron spectroscopy

All-solid-state lithium batteries are a promising alternative for next generation of safe energy storage devices, provided that parasitic side reactions and the resulting hindrances in ionic transport at the electrolyte-electrode interface can be overcome. Motivated by the need for a fundamental understanding of such interface, we present here real-time measurements of the (electro-)chemical reactivity and local surface potential at the electrified interface Li3PS4 and LiCoO2 using operando X-ray photoelectron spectroscopy.

 

En savoir plus
Structural formula of (a) EMIM+ cation, (b) TFSI- and (c) FSI- anions.

Li-ion solvation in TFSI and FSI - based ionic liquid electrolytes probed by X-ray photoelectron spectroscopy

We demonstrate the capability of conventional laboratory XPS to determine the anions solvation shell of Li+ cation within 1M of LiTFSI and 1M of LiFSI salts dissolved in (EMIM+-FSI-) and (EMIM+-TFSI-) ionic liquids. The binding energy difference between the N1s components originating from the EMIM+ cation and from TFSI- or FSI- anions, solvating the Li+, confirms that both TFSI- and FSI- contribute simultaneously to the Li+ solvation. Additionally, the degradation of the TFSI and FSI -based electrolytes under X-ray exposure is proved.   

 

En savoir plus
High quality 90 nm and 50 nm Li4Ti5O12 films integrated on silicon substrates

Integration of Li4Ti5O12 crystalline films on silicon towards high-rate performance lithionic devices

The growth of crystalline Li-based oxide thin films on silicon substrates is essential for the integration of next-generation solid-state lithionic and electronic devices. In this work, we employ a 2 nm γ-Al2O3 buffer layer on Si substrates in order to grow high quality crystalline thin films Li4Ti5O12 (LTO). Long-term galvanostatic cycling of 50 nm LTO demonstrates exceptional electrochemical performance, specific capacity of 175 mAh g-1 and 56 mAh g-1 at 100C and 5000C respectively, with a capacity retention of 91% after 5000 cycles.

 

En savoir plus
Operando XAS and XRD

Understanding the (de-)lithiation mechanism of nano-sized LiMn2O4 allows achieving long-term cycling stability

We report an in-depth investigation of the local atomic geometry, electronic and crystallographic structure evolution of nano-sized LiMn2O4 using operando XAS and XRD to shed light on (de-)lithiation mechanism when cycled in wide voltage range of 2.0 to 4.3 V vs Li+/Li. Leveraging on these findings, a novel electrochemical cycling protocol, with periodic deep discharge, yields superior electrochemical performance cycled in the range of 3.3 to 4.3 V exhibiting an excellent structure cyclability and an unprecedented increase in the specific capacity upon long cycling.

En savoir plus
Xiaohan Wu (links) und Federica Marone

Feststoffbatterien bei der Verformung beobachten

Energie und Klima Forschung mit Synchrotronlicht Zukunftstechnologien Industriezusammenarbeit Energiewende

Forschende des PSI haben mechanische Vorgänge in Feststoffbatterien so genau wie noch nie beobachtet. Mittels Röntgentomografie an der Synchrotron Lichtquelle Schweiz SLS entdeckten sie, wie sich Risse im Inneren der Batterien ausbreiten. Die Erkenntnisse können dabei helfen, Akkus für Elektroautos oder Smartphones sicherer und leistungsfähiger zu machen.

En savoir plus